Abstract:
Systems and methods for analyzing printed images are provided. One system includes a processing circuit configured to: determine a set of one or more locations on the printed image on the substrate to measure color values; determine a set of input tone values for the at least one ink; receive a set of measured color values corresponding to the set of locations on the printed image from a sensor; and determine a tone value increase error based on the set of measured color values and the set of input tone values. The at least one processing circuit is configured to determine the tone value increase error without requiring measured color values from an area having solid ink.
Abstract:
Systems and methods for providing remote approval of an image for printing are provided. One system includes a processing circuit in communication with an image capturing device that is configured to capture an image of a printed product. The processing circuit is configured to process the captured image into a processed image accurate to within a tolerance in a color space to indicate the visual appearance of one or more colors. The color space is a standardized color space, such as sRGB or CIELAB. The processing circuit is further configured to transmit the processed image to a display located remote from the image capturing device and to receive an input signal from a remote input device to allow a user to approve or reject the displayed processed image for printing on a print device.
Abstract:
An image processing apparatus and method for measuring spatial and spectral information from an image of a printed substrate. The image processing apparatus processes the spatial and spectral information from the same acquired image using first and second processors. One of the first or second processors includes a large format sensor and the other of the first or second processors includes a small format sensor. Both the first and second processors are capable of processing both the spatial and spectral information and neither the first or second processor is necessarily dedicated to processing only the spatial or spectral information.
Abstract:
The present invention relates generally to the field of printing presses, and specifically to a method and apparatus for visually inspecting a web moving on a printing press using a CMOS based image recording device and preferably a LED light source. The LED light source includes at least two colors of light, such as white and blue, for highlighting various ink colors with respect to the web.
Abstract:
The invention recites a gate that is selectively operable to pass a stream of printed products to one of a first path and a second path. The waste gate includes a frame and a first roller member supported by the frame for rotation about a first axis. The first axis is fixed with respect to the frame. A second roller member is supported by the frame for rotation about a second axis. The second roller is movable with respect to the first roller between a first position and a second position. A conveyor belt is supported by the first roller and the second roller such that when the second roller is in the first position, the stream of printed products pass along the first path and when the second roller is in the second position, the stream of printed products pass along the second path.
Abstract:
A camera assembly for use in scanning a paper substrate of a printing press including a housing, a camera mounted within the housing, a light source, and at least one mirror.
Abstract:
A color registration control system for a printing press including an area scanner for acquiring an image of a paper substrate and an image processing system adapted to receive the image and process the image to determine any color register error.
Abstract:
Provided is a sheet diverter for directing signatures moving in serial fashion along a diverter path to one of a plurality of collation paths. The sheet diverter includes a pair of diverter rolls for directing a signature to one of the plurality of collation paths and a diverter wedge for deflecting the signature to a selected one thereof. The diverter wedge is positioned between the diverter rolls so as to reach high into the diverter path thereby providing increased support to the signature as it travels from between the diverter rolls to the diverter wedge. The diverter rolls are permitted to intermesh with the diverter wedge so as to allow the diverter wedge to be so positioned.
Abstract:
An apparatus for decelerating signatures moving in tandem fashion through sheet processing equipment is provided. A pair of counter-rotating cams lying in general face-to-face relation along a travel path of the signatures reach into the travel path of the signatures to effectively grab the trailing end of each signature so as to decrease the speed of each signature as the signature continues or to further processing equipment in the sheet handling system. Also provided is a guide assembly which increases control over the signatures during the decelerating process and during transport of the signatures to further downstream processing equipment.
Abstract:
A printing press for printing on metal cans includes a plurality of inkers. Each inker prints a different color ink on the cans, and includes a first module, a second module, a roller and a support member. The first module has motors to drive output shafts. The second module has ink displacement units, an ink inlet to provide ink to the ink displacement units, ink channels to transfer ink from the ink displacement units to ink outlets of the second module and input shafts to removably couple to the output shafts of the first module. The roller receives ink from the ink displacement units and transfers the ink toward the cans. The support member supports the first and second modules in at least one position relative to the roller. The support member facilitates removal of the second module by a press operator for cleaning the ink channels.