Abstract:
A yaw-rate sensor having a resonant driving frequency and a resonant Coriolis frequency. In addition, the yaw-rate sensor has at least one operating voltage, of which the resonant Coriolis frequency is a function. The resonant Coriolis frequency is adjusted to the resonant driving frequency with the aid of an adjustment voltage. A change in the resonant Coriolis frequency as a result of a change in the operating voltage may be compensated for, in that a suitably changed adjusting voltage may be produced from a compensation circuit.
Abstract:
A yaw-rate sensor having a substrate and a plurality of movable substructures that are mounted over a surface of the substrate, the movable substructures being coupled to a shared, in particular, central spring element, means being provided for exciting the movable substructures into a coupled oscillation in a plane that extends parallel to the surface of the substrate, the movable substructures having Coriolis elements, means being provided for detecting deflections of the Coriolis elements induced by a Coriolis force, a first Coriolis element being provided for detecting a yaw rate about a first axis, a second Coriolis element being provided for detecting a yaw rate about a second axis, the second axis being oriented perpendicularly to the first axis.
Abstract:
A component having an acceleration sensor having at least one freely oscillatory mass, and a resonator having at least one resonating structure, in which the at least one freely oscillatory mass of the acceleration sensor and the at least one resonating structure of the resonator are disposed on and/or in one chip. A corresponding production method for a component is also described.
Abstract:
A microstructured component having a layered construction may allow implementation of component structures having a layer thickness of more than 50 μm, e.g., more than 100 μm. Capping of the component structure may allow vacuum enclosure of the component structure with a hermetically sealed electrical connection. The layered construction of the microstructured component includes a carrier including at least one glass layer, e.g., a PYREX™ layer, a component structure, arranged in a silicon layer, which is bonded to the glass layer, and a cap, which is positioned over the component structure and is also bonded to the glass layer.
Abstract:
An rate-of-rotation sensor having a Coriolis element, which is arranged over a surface of a substrate, is described. The Coriolis element is induced to oscillate in parallel to a first axis. In response to a Coriolis force, the Coriolis element is deflected in a second axis, which is perpendicular to the first axis. A proof element is provided to prove the deflection.
Abstract:
A yaw rate sensor includes a substrate which has a main plane of extension and a Coriolis element which is movable relative to the substrate. The yaw rate sensor has an excitation arrangement for exciting a drive oscillation of the Coriolis element along a first direction parallel to the main plane of extension. The yaw rate sensor has a detection arrangement for detecting a Coriolis deflection of the Coriolis element along a third direction which is perpendicular to the main plane of extension. In addition, the yaw rate sensor has a quadrature compensation structure which includes a comb electrode structure and a plate capacitor structure.
Abstract:
A method and system for testing a MEMS sensor element during operation of a MEMS sensor system in one embodiment includes a test signal generator configured to generate a broad frequency band test signal, and a verification signal substantially identical to the test signal, a microelectrical-mechanical system (MEMS) sensor element operatively connected to the test signal generator for generating a sensor output in response to the test signal, a comparison component configured to generate an evaluation signal output based upon the verification signal and the test signal, and an evaluation circuit operatively connected to the comparison component and configured to identify a mismatch between the verification signal and the sensor output based upon the evaluation signal.
Abstract:
A yaw rate sensor includes a drive mass element which is situated above a surface of a substrate and is drivable to vibrate by a drive device along a first axis extending along the surface, having a detection mass element, which is deflectable under the influence of a Coriolis force along a second axis perpendicular to the surface, and having a detection device by which the deflection of the detection mass element along the second axis is detectable. Due to the arrangement of the second axis perpendicular to the surface, the yaw rate sensor may be integrated into a chip together with additional yaw rate sensors suitable for detection of rotations about axes of rotation in other directions.
Abstract:
A micromechanical rotation rate sensor has a seismic mass and driving devices which cause a driving vibration of the seismic mass in a first direction x. The rotation rate sensor has measuring devices which measure a deflection of the seismic mass in a second direction y, and generate a deflection signal. The deflection includes a measurement deflection caused by a Coriolis force and an interference deflection, the interference deflection being phase-shifted with respect to the measurement deflection by 90°. Compensation devices are provided at the seismic mass to reduce the interference deflection. Regulation devices are provided, to which the deflection signal is supplied as an input variable, which demodulate an interference deflection signal from the deflection signal, and which generate a compensation signal from the interference deflection signal, which is supplied to the compensation devices.
Abstract:
A delta sigma modulator includes an oscillatory system having a natural frequency and an electronics and a control loop which acts upon the electronics from the oscillatory system and again upon the oscillatory system from the electronics. The control loop provides that a gain in the control loop demonstrates a peaking in a frequency range around the natural frequency of the oscillatory system.