Abstract:
An ink jet printing process comprising the steps of; a) providing an ink jet printer in which a continuous stream of ink jet ink is emitted from a nozzle that is responsive to digital data signals; b) loading the printer with an ink jet recording element; c) loading the printer with an inkjet ink comprising a thermally-responsive polymeric material; and d) ejecting ink from a thermally-steered continuous ink jet print head onto one of the ink jet recording elements in response to the digital data signals.
Abstract:
An ink jet nozzle plate is provided comprising an outer surface having a self-assembled monolayer thereon comprising a mixture of at least one hydrophobic compound and at least one ionic compound, which monolayer renders the outer surface non-wetting with respect to aqueous ink solutions. In accordance with preferred embodiments, the self-assembled monolayers comprises a mixture of hydrophobic alkyl thiols and charged alkyl thiols. An advantage of coatings in accordance with the invention is that they provide improved non-wetting characteristics after contact with ink.
Abstract:
A method for replenishing fouled coatings on a nozzle plate for an ink jet printhead, the nozzle plate comprising the following layers in the order recited: i) a first monomolecular layer of an organic material having first and second functional groups, the first functional group of the first monomolecular layer being bound to the surface of the nozzle plate, and the second functional group of the first monomolecular layer being bound to a second monomolecular layer, and ii) the second monomolecular layer of an organic material having first and second functional groups, the first functional group of the second monomolecular layer being bound to the second functional group of the first monomolecular layer, and the second functional group of the second monomolecular layer being an anti-wetting group, the second monomolecular layer having been fouled; the method comprising A) unbinding the first functional group of the fouled second monomolecular layer so that it is no longer bound to the second functional group of the first monomolecular layer; B) removing the fouled second monomolecular layer; and C) reattaching a new, unfouled second monomolecular layer to the first monomolecular layer; the new, unfouled second monomolecular layer comprising an organic material having first and second functional groups, the first functional group of the second new, unfouled monomolecular layer being bound to the second functional group of the first monomolecular layer, and the second functional group of the new, unfouled second monomolecular layer being an anti-wetting group.
Abstract:
Methods for forming nanoparticles under commercially attractive conditions. The nanoparticles can have very small size and high degree of monodispersity. Low temperature sintering is possible, and highly conductive films can be made. Semiconducting and electroluminescent films can be also made. One embodiment provides a method comprising: (a) providing a first mixture comprising at least one nanoparticle precursor and at least one first solvent for the nanoparticle precursor, wherein the nanoparticle precursor comprises a salt comprising a cation comprising a metal; (b) providing a second mixture comprising at least one reactive moiety reactive for the nanoparticle precursor and at least one second solvent for the reactive moiety, wherein the second solvent phase separates when it is mixed with the first solvent; and (c) combining said first and second mixtures in the presence of a surface stabilizing agent, wherein upon combination the first and second mixtures phase-separate and nanoparticles are formed.
Abstract:
A composition comprises at least one silver nanoparticulate material, at least one conductive microparticulate material, and less than about 3% wt of an organic or polymeric resin. The composition provides a low curing temperature and upon cure good film properties. Also provided herein is a method of using an ink or paste, comprising: (i) providing the ink or paste comprising at least one silver nanoparticulate material, at least one conductive microparticulate material, and less than about 3% wt of an organic or polymeric resin; and (ii) curing the ink or paste at a temperature at lower than about 200° C. to decompose the organic resin.
Abstract:
A method of fabricating a device, comprising a ink or paste on a silicon based semiconductor material, wherein the ink or paste comprises a mixture of inorganic conductive and additive nanoparticles and wherein the semiconductor material is silicon. An example is a mixture of silver and palladium nanoparticles.
Abstract:
A method of forming a pattern of electrical conductors on a substrate (18) consists of forming metal nanoparticles on a conductive material. A light absorbing dye is mixed with the metal nanoparticles. The mixture is then coated on the substrate. The pattern is formed on the coated substrate with laser light (14). Unannealed material is removed from the substrate.
Abstract:
A method of measuring absolute static pressure in a microfluidic device transporting a working fluid that is immiscible in a first selected gas environment, includes providing a first fluid conducting channel having an atmosphere provided by the first selected gas environment in a sealed environment and in communication with the microfluidic device at a first point of communication; providing a first sensing mechanism that is electrically interrogated, disposed adjacent to the first fluid conducting channel; and transporting the working fluid under pressure conducted by the microfluidic device into the first fluid conducting channel such that the volume transported into such first fluid conducting channel varies depending upon the absolute static pressure of the working fluid.
Abstract:
A method for correcting the performance of a continuous ink jet print head having a nozzle plate with a plurality of nozzles each having an orifice, at least one of the nozzles being a malfunctioning nozzle, the method including: a) determining which nozzle of the nozzle plate is malfunctioning; b) applying a heat-activatable material over the surface of the nozzle plate; c) applying heat to the malfunctioning nozzle, thereby causing the heat-activatable material to flow into the orifice of the malfunctioning nozzle to block it; and d) removing any excess heat-activatable material.
Abstract:
A method for treating a metallic oxide or metallic nitride ink jet printhead nozzle plate comprising stamping the front surface thereof with an anti-wetting agent using an elastomeric stamp.