Abstract:
A detector for determining a position of at least one object, where the detector includes: at least one optical sensor, where the optical sensor has at least one sensor region, where the optical sensor is designed to generate at least one sensor signal in a manner dependent on an illumination of the sensor region by illumination light traveling from the object to the detector; at least one beam-splitting device, where the beam-splitting device is adapted to split the illumination light in at least two separate light beams, where each light beam travels on a light path to the optical sensor; at least one modulation device for modulating the illumination light, where the at least one modulation device is arranged on one of the at least two light paths; and at least one evaluation device, where the evaluation device is designed to generate at least one item of information from the at least one sensor signal.
Abstract:
A detector (118) for determining a position of at least one object (112) is disclosed, the detector (118) comprising: at least one longitudinal optical sensor (120), wherein the longitudinal optical sensor (120) has at least one sensor region (124), wherein the longitudinal optical sensor (120) is at least partially transparent, wherein the longitudinal optical sensor (120) is designed to generate at least one longitudinal sensor signal in a manner dependent on an illumination of the sensor region (124) by at least one light beam (126) traveling from the object (112) to the detector (118), wherein the longitudinal sensor signal, given the same total power of the illumination, is dependent on a beam cross-section of the light beam (126) in the sensor region (124); at least one illumination source (114) adapted to illuminate the object (112) with illumination light (115) through the longitudinal optical sensor (120); and at least one evaluation device (136), wherein the evaluation device (136) is designed to generate at least one item of information on a longitudinal position of the object (112) by evaluating the longitudinal sensor signal.
Abstract:
The present invention relates to a photoactive material comprising a donor substance and an acceptor substance, wherein the donor substance comprises or consists of one or more compounds of formula (I) described herein, or the acceptor substance comprises or consists of one or more compounds of formula (I) described herein, or the donor substance comprises or consists of a first compound of formula (I) described herein and the acceptor substance comprises a second compound of formula (I) described herein with the proviso that the first and second compound are not the same, as well as to an organic solar cell comprising said photoactive material. The present invention also relates to a photoelectric conversion device comprising or consisting of two or more organic solar cells comprising said photoactive material and to compounds of formula (I) as described herein for use as donor substance or as acceptor substance in a photoactive material. Further, the present invention relates to the use of a compound of formula (III) as described herein in the synthesis of a compound of formula (I) as described herein.
Abstract:
The present invention relates to a photoactive material comprising a donor substance and an acceptor substance, wherein the donor substance comprises or consists of one or more compounds of formula (I) described below, or the acceptor substance comprises or consists of one or more compounds of formula (I) described below, or the donor substance comprises or consists of a first compound of formula (I) described below and the acceptor substance comprises a second compound of formula (I) described below with the proviso that the first and second compound are not the same, as well as to an organic solar cell or photodetector comprising said photoactive material. The present invention also relates to a photoelectric conversion device comprising or consisting of two or more organic solar cells comprising said photoactive material and to compounds of formula (I) as described below for use as donor substance or as acceptor substance in a photoactive material.
Abstract:
Boron-comprising perylene monoimides and a process for producing the boron-comprising perylene monoimides are provided. The boron-comprising perylene monoimides are useful as building blocks for producing perylene monoimide derivatives and monoimide derivatives. The boron-comprising perylene monoimides are also useful for preparing dye-sensitized solar cells.
Abstract:
An optical detector(110) is disclosed, comprising: at least one optical sensor(122) adapted to detect a light beam(120) and to generate at least one sensor signal, wherein the optical sensor(122) has at least one sensor region(124), wherein the sensor signal of the optical sensor(122) exhibits a non-linear dependency on an illumination of the sensor region(124) by the light beam (120) with respect to a total power of the illumination; at least one image sensor(128) being a pixelated sensor comprising a pixel matrix(174) of image pixels(176), wherein the image pixels(176) are adapted to detect the light beam(120) and to generate at least one image signal, wherein the image signal exhibits a linear dependency on the illumination of the image pixels(176) by the light beam(1,6) with respect to the total power of the illumination; and at least one evaluation device(132), the evaluation device(132) being adapted to evaluate the sensor signal and the image signal. In a particularly preferred embodiment, the non-linear dependency of the sensor signal on the total power of the illumination of the optical sensor(122) is expressible by a non-linear function comprising a linear part and a non-linear part, wherein the evaluation device(132) is adapted to determine the linear part and/or the non-linear part of the non-linear function by evaluating both the sensor signal and the image signal. Herein, the evaluation device(132), preferably, comprises a processing circuit(136) being adapted to provide a difference between the sensor signal and the image signal for determining the non-linear part of the non-linear function.
Abstract:
A detector (110) and a method for optically determining a position of at least one object (112). The detector (110) comprises at least one optical sensor (114) for determining a position of at least one light beam (134) and at least one evaluation device (164) for generating at least one item of information on a transversal position of the object (112) and at least one item of information on a longitudinal position of the object (112). The sensor (114) has at least a first electrode (126) and a second electrode (128). At least one photovoltaic material (130) is embedded in between the first electrode (126) and the second electrode (128). The first electrode (126) or the second electrode (128) is a split electrode (136) having at least three partial electrodes (140, 142, 144, 146). The detector and the method can determine three-dimensional coordinates of an object in a fast and efficient way.
Abstract:
The present invention relates to a cyanated perylene compound of the formula I in which one of the Z substituents and one of the Z* substituents are cyano and the other Z substituent and the other Z* substituent are each independently CO2R9, CONR10R11, optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl or C6-C14-aryl, where R9, R10 and R11 are each as defined in the claims; and mixtures thereof. The present invention further relates to a composition comprising a cyanated perylene compound of the formula I or mixtures thereof and to a process for preparation thereof; to color converters comprising at least one polymer as matrix material and at least one cyanated perylene compound or mixtures thereof or a composition comprising at least one cyanated perylene compound or mixtures thereof as fluorescent dye; to the use of these color converters and to lighting devices comprising at least one LED and at least one color converter.
Abstract:
A data readout device (114) for reading out data from at least one data carrier (112) having data modules (116) located at least two different depths within the at least one data carrier (112) is disclosed. The data readout device (114) comprises: —at least one illumination source (122) for directing at least one light beam (124) onto the data carrier (112); -at least one detector (130) adapted for detecting at least one modified light beam modified by at least one of the data modules (116), the detector (130) having at least one optical sensor (132), wherein the optical sensor (132)has at least one sensor region (134), wherein the optical sensor (132)is designed to generate at least one sensor signal in a manner dependent on an illumination of the sensor region (134)by the modified light beam, wherein the sensor signal, given the same total power of the illumination,is dependent on a beam cross-section of the modified light beam in the sensor region (134); and -at least one evaluation device (136) adapted for evaluating the at least one sensor signal and for deriving data stored in the at least one data carrier (112) from the sensor signal. Further, a data storage system (110), a method for reading out data from at least one data carrier (112) and a use of an optical sensor (132) for reading out data are disclosed.
Abstract:
A detector (110) for determining a position of at least one object (112) with regard to at least one optical sensor (120) is proposed, wherein the optical sensor (120) has an image plane (122). The detector (110) comprises: at least one illumination source (134), wherein the illumination source (134) emits at least one light beam (136), wherein the light beam (136) comprises a component which is parallel to the image plane (122) of the optical sensor (120); the optical sensor (120), wherein the optical sensor (120) has a sensor region (126) in the image plane (122), wherein the optical sensor (120) is adapted to determine a transversal component of the position of the object (112) in an event where the object (112) approaches the optical sensor (120) in a manner that light is scattered from the component of the light beam (136) conducted parallel to the image plane (122) of the optical sensor (120), the transversal component of the position being a position in the image plane (122) of the optical sensor (120), the optical sensor (120) being adapted to generate at least one transversal sensor signal from the light scattered from the component of the light beam (136) conducted parallel to the image plane (122) of the optical sensor (120) in the sensor region (126), wherein the optical sensor (120) is further designed to generate at least one longitudinal sensor signal in a manner dependent on an illumination of the sensor region (126) by light which is scattered from the component of the light beam (136) conducted parallel to the image plane (122) of the optical sensor (120), wherein the longitudinal sensor signal is dependent on a variation of an intensity of the light is scattered from the component of the light beam (136) conducted parallel to the image plane (122) of the optical sensor (120) in the sensor region (126); and an evaluation device (132), wherein the evaluation device (132) is designed to generate at least one item of information on a transversal component of a position of the object (112) by evaluating the transversal sensor signal and wherein the evaluation device (132) is further designed to generate at least one item of information on a longitudinal component of a position of the object (112) by evaluating the longitudinal sensor signal.