Abstract:
Metalized plastic substrates, and methods thereof are provided herein. The method includes providing a plastic substrate having a plurality of accelerators dispersed in the plastic substrate. The accelerators have a formula selected from the group consisting of: CuFe2O4−δ, Ca0.25Cu0.75TiO3−β, and TiO2−σ, wherein δ, β, σ denotes oxygen vacancies in corresponding accelerators and 0.05≦δ≦0.8, 0.05≦β≦0.5, and 0.05≦σ≦1.0. The method further includes removing at least a portion of a surface of the plastic substrate to expose at least a first accelerator. The method further includes plating the exposed surface of the plastic substrate to form at least a first metal layer on the at least first accelerator, and then plating the first metal layer to form at least a second metal layer.
Abstract:
A method for metalizing a polymer substrate and a polymer article prepared thereof. First a polymer substrate having a base polymer and at least one metal compound dispersed in the base polymer is provided. A surface of the polymer substrate is then irradiated with an energy beam such that a water contact angle of the surface of the polymer substrate is at least 120°. And then the surface of the polymer substrate is subjected to chemical plating.
Abstract:
The present disclosure provides a metal-ceramic composite structure and a fabrication method thereof. The metal-ceramic composite structure includes a ceramic substrate having a groove on a surface thereof; a metal member filled in the groove, including a main body made of zirconium base alloy, and a reinforcing material dispersed in the main body and selected from at least one of W, Mo, Ni, Cr, stainless steel, WC, TiC, SiC, ZrC, ZrO2, BN, Si3N4, TiN and Al2O3; a luminance value L of the metal member surface is in a range of 36.92-44.07 under a LAB Chroma system.
Abstract:
A sealing assembly for a battery, a method of preparing the sealing assembly and a lithium ion battery are provided. The sealing assembly for a battery comprises: a ceramic ring (3) having a receiving hole (31), a metal ring (4) fitted over the ceramic ring (3) for sealing an open end of the battery, and a column (2) formed in the receiving hole (31) which comprises a metal-metal composite (21), wherein the metal-metal composite (21) comprises: a metal porous body, and a metal material filled in pores of the metal porous body.
Abstract:
The present disclosure discloses an anti-yellowing composition comprising at least a phosphorus-containing compound and at least a pentaerythritol ester, wherein the phosphorus-containing compound is selected from a phosphate salt, and a concentration of the phosphorus-containing compound is 100-1600 parts by weight, relative to 100 parts by weight of the pentaerythritol ester. The present disclosure also discloses a resin composition containing the anti-yellowing composition, and a metal-resin composite formed with the resin composition and a metal substrate, and a preparation method and use thereof. The present disclosure further discloses an electronic product shell formed with the resin composition and a metal shell body.
Abstract:
A ceramic and a preparation method therefor are provided. The ceramic includes a zirconia matrix, and an additive dispersed inside and on an outer surface of the zirconia matrix. The additive is an oxide including elements A and B, where A is selected from at least one of Ca, Sr, Ba, Y, and La, and B is selected from at least one of Cr, Mn, Fe, Co, and Ni.
Abstract:
A defroster and a vehicle are provided. The defroster includes: a housing defining an air outlet; a heating device disposed in the housing; an air blower defining a blowing outlet and disposed in the housing; and an air duct defining a duct inlet and a duct outlet, the air duct being disposed between the blowing outlet and the heating device so that air blown out from the blower outlet enters the air duct via the duct inlet and goes out of the air duct via the duct outlet, then passes through the heating device to exchange heat with the heating device, and is discharged out of the housing via the air outlet, wherein an area of the duct inlet is different from that of the duct outlet.
Abstract:
A method for integrally molding a metal and a resin and a metal-resin composite structure obtainable by the same are provided. The method comprises forming a nanopore in a surface of a metal sheet; melting a thermoplastic resin on the surface of the metal sheet formed with the nanopore; and injection molding the thermoplastic resin onto the surface of the metal sheet. The thermoplastic resin includes a mixture of a main resin and a polyolefin resin, the main resin is a polycarbonate, and the polyolefin resin has a melting point of about 65° C. to about 105° C.
Abstract:
Embodiments of the present disclosure are directed to a doped tin oxide. The doped tin oxide includes a tin oxide and at least one oxide of a doping element. The doping element includes at least one of vanadium and molybdenum. The doped tin oxide includes an amount of the tin oxide ranging from 90 mol % to 99 mol %, and an amount of the at least one oxide ranging from 1 mol % to 10 mol %.
Abstract:
A metal-resin composite and method for producing the same are provided. The method comprises: A) forming nanopores in at least a part of a surface of a metal sheet; and B) injection molding a thermoplastic resin directly on the surface of the metal sheet. The thermoplastic resin includes a main resin and a polyolefin resin. The main resin includes a mixture of polyphenylene ether and polyphenylene sulfide. And the polyolefin resin has a melting point of about 65° C. to about 105° C.