Abstract:
A glass-ceramic that includes: SiO2 from about 35 mol % to about 80 mol %; B2O3 from about 10 mol % to about 50 mol %; P2O5 from about 10 mol % to about 50 mol %; and an optional addition of one or more of CaO, MgO and Bi2O3 from 0 mol % to about 5 mol %, wherein the glass-ceramic further comprises a boron-phosphate crystalline phase.
Abstract:
A hollow glass waveguide and related method are provided. The microwave waveguide includes a glass body including a first end, a second end, an outer glass surface extending between the first end and the second end, an inner glass surface defining a hollow channel that extends from the first end to the second end and a glass material between the outer surface and the inner surface. The microwave waveguide includes a layer of metal embedded in the glass body. The layer of metal surrounds the hollow channel when viewed in cross-section and extends between the first end and the second end of the glass body. The layer of metal is electrically conductive and the hollow channel is dimensioned such that microwaves introduced into the hollow channel are conducted along the hollow channel between the first end and the second end.
Abstract:
An organic light emitting diode (OLED) device having enhanced light extraction is disclosed. The OLED device includes an upper waveguide structure having an organic layer and supports first guided modes, and a lower waveguide structure with a light-extraction waveguide that supports second guided modes substantially matched to the first guided modes. The lower waveguide structure includes a light-extraction waveguide interfaced with a light-extraction matrix. The light-extraction waveguide includes one or more light-redirecting features. The upper and lower waveguide structures are configured to facilitate mode coupling from the first guided modes to the second guide modes while substantially avoiding coupling the first guided modes to surface plasmon polaritons. The light traveling in the second guided modes is redirected to exit the OLED device by light-redirecting features of the light-extraction waveguide.
Abstract:
A laminated glass structure for an electronic device includes: a core glass layer having a first coefficient of thermal expansion (CTE); and a plurality of clad glass layers, each having a CTE that is lower than or equal to the first CTE of the core glass layer. A first of the clad glass layers is laminated to a first surface of the core glass layer and a second of the clad layers is laminated to a second surface of the core glass layer. Further, the total thickness of the core glass layer and the clad glass layers ranges from about 0.1 mm to about 3 mm. In addition, each of the first of the clad layers and the core glass layer comprises a loss tangent of 0.006 or less for signals having a frequency of 1 GHz to about 100 GHz.
Abstract:
An electronic apparatus includes a substrate including a first major surface, a second major surface, and an edge surface. The edge surface includes a radius of curvature extending between the first major surface and the second major surface. The electronic apparatus includes an opto-electronic device positioned on the first major surface. The electronic apparatus includes an electrical component positioned on the second major surface. The electronic apparatus includes a first electrically-conductive trace attached to the edge surface. The first electrically-conductive trace electrically connects a first portion of the opto-electronic device to the electrical component and defines a first current path. The electronic apparatus includes a second electrically-conductive trace extending through an opening in the substrate. The second electrically-conductive trace electrically connects a second portion of the opto-electronic device to the electrical component and defines a second current path different than the first current path.
Abstract:
A glass-ceramic that includes: SiO2 from about 35 mol % to about 80 mol %; B2O3 from about 10 mol % to about 50 mol %; P2O5 from about 10 mol % to about 50 mol %; and an optional addition of one or more of CaO, MgO and Bi2O3 from 0 mol % to about 5 mol %, wherein the glass-ceramic further comprises a boron-phosphate crystalline phase.
Abstract:
Structured glass articles include a glass substrate including a glass cladding layer fused to a glass core layer, a cavity formed in the glass substrate, and a shielding layer disposed within the cavity. In some embodiments, a passivation layer is disposed within the cavity such that the shielding layer is between the passivation layer and the glass substrate. A method for forming a glass fan-out includes depositing a shielding layer within a cavity in a glass substrate. The glass substrate includes a glass cladding layer fused to a glass core layer. A silicon chip may be deposited within the cavity. In some embodiments, the method also includes depositing a passivation layer within the cavity such that the shielding layer is between the passivation layer and the glass substrate.
Abstract:
A laminated glass structure is provided that includes: a core glass layer having a first coefficient of thermal expansion (CTE); and a plurality of clad glass layers, each having a CTE that is lower than or equal to the first CTE of the core glass layer. A first of the clad layers is laminated to a first surface of the core glass layer and a second of the clad layers is laminated to a second surface of the core glass layer. Further, the total thickness of the core glass layer and the clad glass layers ranges from about 0.1 mm to about 3 mm. In addition, the laminated glass structure is characterized by a transmission power of at least 75% and at least 55% for signals at 28 GHz and 60 GHz, respectively, as calculated in a Three-Layer Model.
Abstract:
An electrode coating composition that includes at least one crosslinkable monomer; at least one hydrophobic monomer; and at least one dielectric constant enhancing agent selected from dielectric enhancing monomers, ferroelectric particulates, and electroactive polymers. Coatings including the polymer of compositions, and articles including electrically isolating layers are also disclosed.
Abstract:
An organic light emitting diode (OLED) device having enhanced light extraction is disclosed. The OLED device includes an upper waveguide structure having an organic layer and supports first guided modes, and a lower waveguide structure with a light-extraction waveguide that supports second guided modes substantially matched to the first guided modes. The lower waveguide structure includes a light-extraction waveguide interfaced with a light-extraction matrix. The light-extraction waveguide includes one or more light-redirecting features. The upper and lower waveguide structures are configured to facilitate mode coupling from the first guided modes to the second guide modes while substantially avoiding coupling the first guided modes to surface plasmon polaritons. The light traveling in the second guided modes is redirected to exit the OLED device by light-redirecting features of the light-extraction waveguide.