Abstract:
A system for determining location and timing information in a cellular network includes a space-time calibration unit (SCU) and a plurality of nodes in communication with the SCU. Each node includes a node ping driver that receives frame synchronization information from a respective subset of cell sites, and associates the frame synchronization information with respective receive count stamps generated using a local node clock. The system also includes a user handset that includes a handset ping driver that receives the frame synchronization information from a serving cell site and one or more neighbor cell sites, and associates the frame synchronization information with respective receive count stamps generated using a local handset clock. The SCU uses the information from the node and handset ping drivers to determine a handset location.
Abstract:
A sequence of images depicting an object is captured, e.g., by a camera at a point-of-sale terminal in a retail store. The object is identified, such as by a barcode or watermark that is detected from one or more of the images. Once the object's identity is known, such information is used in training a classifier (e.g., a machine learning system) to recognize the object from others of the captured images, including images that may be degraded by blur, inferior lighting, etc. In another arrangement, such degraded images are processed to identify feature points useful in fingerprint-based identification of the object. Feature points extracted from such degraded imagery aid in fingerprint-based recognition of objects under real life circumstances, as contrasted with feature points extracted from pristine imagery (e.g., digital files containing label artwork for such objects). A great variety of other features and arrangements—some involving designing classifiers so as to combat classifier copying—are also detailed.
Abstract:
The parameters of an optical code are optimized to achieve improved signal robustness, reliability, capacity and/or visual quality. An optimization program can determine spatial density, dot distance, dot size and signal component priority to optimize robustness. An optical code generator employs these parameters to produce an optical code at the desired spatial density and robustness. The optical code is merged into a host image, such as imagery, text and graphics of a package or label, or it may be printed by itself, e.g., on an otherwise blank label or carton. A great number of other features and arrangements are also detailed.
Abstract:
A thermoplastic resin, such as PET, is molded to define a 2D code signal, such as a digital watermark pattern. The mold can comprise an array of hole or spike features, some of which are directly vented to atmospheric pressure. A network of channels can link the other features to the directly-vented features, so all features are vented. A mold comprising spike features can form a digital watermark pattern on an item such that the watermark payload is decodable both from the side of the item that contacted the mold, and also from the opposite, non-contact side of the item. To aid entry of viscous thermoplastic among the very fine elemental features of a mold representing a watermark signal pattern, the features can be overlapped, forming a connected binary mark having larger features. A variety of other improvements and arrangements are also detailed.
Abstract:
A sequence of images depicting an object is captured, e.g., by a camera at a point-of-sale terminal in a retail store. The object is identified, such as by a barcode or watermark that is detected from one or more of the images. Once the object's identity is known, such information is used in training a classifier (e.g., a machine learning system) to recognize the object from others of the captured images, including images that may be degraded by blur, inferior lighting, etc. In another arrangement, such degraded images are processed to identify feature points useful in fingerprint-based identification of the object. Feature points extracted from such degraded imagery aid in fingerprint-based recognition of objects under real life circumstances, as contrasted with feature points extracted from pristine imagery (e.g., digital files containing label artwork for such objects). A great variety of other features and arrangements—some involving designing classifiers so as to combat classifier copying—are also detailed.
Abstract:
Methods and arrangements involving electronic devices, such as smartphones, tablet computers, wearable devices, etc., are disclosed. One arrangement involves a low-power processing technique for discerning cues from audio input. Another involves a technique for detecting audio activity based on the Kullback-Liebler divergence (KLD) (or a modified version thereof) of the audio input. Still other arrangements concern techniques for managing the manner in which policies are embodied on an electronic device. Others relate to distributed computing techniques. A great variety of other features are also detailed.
Abstract:
A sequence of images depicting an object is captured, e.g., by a camera at a point-of-sale terminal in a retail store. The object is identified, such as by a barcode or watermark that is detected from one or more of the images. Once the object's identity is known, such information is used in training a classifier (e.g., a machine learning system) to recognize the object from others of the captured images, including images that may be degraded by blur, inferior lighting, etc. In another arrangement, such degraded images are processed to identify feature points useful in fingerprint-based identification of the object. Feature points extracted from such degraded imagery aid in fingerprint-based recognition of objects under real life circumstances, as contrasted with feature points extracted from pristine imagery (e.g., digital files containing label artwork for such objects). A great variety of other features and arrangements—some involving designing classifiers so as to combat classifier copying—are also detailed.
Abstract:
The disclosure relates to message encoding. One claim recites an apparatus comprising: electronic memory for storing a plural-bit message; an electronic processor programmed for: obtaining a multi-bit seed; transforming the multi-bit seed by applying randomizing process; and encoding the transformed multi-bit seed with convolutional encoding, the encoded seed comprising a key for transforming the plural-bit message, the key providing security for the plural-bit message. Of course, other claims and combinations are provided too.
Abstract:
A sequence of images depicting an object is captured, e.g., by a camera at a point-of-sale terminal in a retail store. The object is identified, such as by a barcode or watermark that is detected from one or more of the images. Once the object's identity is known, such information is used in training a classifier (e.g., a machine learning system) to recognize the object from others of the captured images, including images that may be degraded by blur, inferior lighting, etc. In another arrangement, such degraded images are processed to identify feature points useful in fingerprint-based identification of the object. Feature points extracted from such degraded imagery aid in fingerprint-based recognition of objects under real life circumstances, as contrasted with feature points extracted from pristine imagery (e.g., digital files containing label artwork for such objects). A great variety of other features and arrangements—some involving designing classifiers so as to combat classifier copying—are also detailed.
Abstract:
A smartphone is adapted for use as an imaging spectrometer, by synchronized pulsing of different LED light sources as different image frames are captured by the phone's CMOS image sensor. A particular implementation employs the CIE color matching functions, and/or their orthogonally transformed functions, to enable direct chromaticity capture. A great variety of other features and arrangements are also detailed.