Abstract:
An improved photovoltaic device and methods of manufacturing the same that includes an interface layer adjacent to a semiconductor absorber layer, where the interface layer includes a material in the semiconductor layer which decreases in concentration from the side of the interface layer contacting the absorber layer to an opposite side of the interface layer.
Abstract:
A method and system for real-time, in-line calculations of opto-electronic properties and thickness of the layers of multi-layered transparent conductive oxide stacks of photovoltaic devices is provided. The method and system include taking measurements of each layer of the stack during deposition thereof. The measurements are then used to calculate the opto-electronic properties and thicknesses of the layers in real-time.
Abstract:
A solar module with a front support, a back support, and a photovoltaic active material located between the front and back supports. An electrically insulative light transmissive seal is located at the peripheral edges of the front support and back support to electrically isolate the active material from the outer surfaces of the solar module.
Abstract:
A method and apparatus for manufacturing a multi-layered structure includes forming a crystalline layer of a material by depositing an amorphous layer of the material on a heated substrate.
Abstract:
An improved photovoltaic device and methods of manufacturing the same that includes an interface layer adjacent to a semiconductor absorber layer, where the interface layer includes a material in the semiconductor layer which decreases in concentration from the side of the interface layer contacting the absorber layer to an opposite side of the interface layer.
Abstract:
Methods and devices are described for a photovoltaic device. The photovoltaic device includes a glass substrate, a semiconductor absorber layer formed over the glass substrate, a metal back contact layer formed over the semiconductor absorber layer, and a p-type back contact buffer layer formed from one of MnTe, Cd1-xMnxTe, and SnTe, the buffer layer disposed between the semiconductor absorber layer and the metal back contact layer.
Abstract:
A photovoltaic device is disclosed including at least one Cadmium Sulfide Telluride (CdSxTe1−x) layer as are methods of forming such a photovoltaic device.
Abstract:
A method to improve operation of a CdTe-based photovoltaic device is disclosed, the method comprising the steps of depositing a semiconductor absorber layer adjacent to a substrate, depositing a semiconductor buffer layer adjacent to the semiconductor layer, and annealing at least one of the semiconductor absorber layer and the semiconductor buffer layer with one of a laser and a flash lamp.
Abstract:
A method and system for real-time, in-line calculations of opto-electronic properties and thickness of the layers of multi-layered transparent conductive oxide stacks of photovoltaic devices is provided. The method and system include taking measurements of each layer of the stack during deposition thereof. The measurements are then used to calculate the opto-electronic properties and thicknesses of the layers in real-time.
Abstract:
A method and apparatus for forming a crystalline cadmium stannate layer of a photovoltaic device by heating an amorphous layer in the presence of hydrogen gas.