Abstract:
A laser apparatus according to embodiments may include a laser chamber including a laser gain medium; a power source; a first electrode to which a voltage is applied from the power source and a second electrode that is grounded, the first and second electrodes being disposed in the laser chamber; and a connector connected to the power source, and supporting the first electrode in a way that allows the first electrode to move toward a side where the second electrode is disposed.
Abstract:
A target supply device may include a tank formed cylindrically with a first material, a cylindrical portion for covering the tank, the cylindrical portion being formed of a second material having higher tensile strength than the first material, a first lid formed of the second material and having a through-hole, the first lid being provided at one end in an axial direction of the cylindrical portion, a second lid formed of the second material and provided at another end opposite the one end in the axial direction of the cylindrical portion, and a nozzle provided to be in fluid communication with the interior of the tank and to pass through the through-hole, the nozzle being formed of the first material.
Abstract:
A target supply device may include a reservoir configured to hold a target material in its interior in liquid form, a vibrating element configured to apply vibrations to the reservoir, a target sensor configured to detect droplets of the target material outputted from the reservoir, a control unit configured to set parameters based on a result of the detection performed by the target sensor, a function generator configured to generate an electrical signal having a waveform based on the parameters, and a power source configured to apply a driving voltage to the vibrating element in accordance with the electrical signal.
Abstract:
A laser system may include: a master oscillator configured to output pulsed laser light; an amplification device for amplifying the pulsed laser light from the master oscillator; a first timing detector configured to detect a first timing at which the master oscillator outputs the pulsed laser light; a second timing detector configured to detect a second timing at which the amplification device discharges; and a controller configured to, based on results of detection by the first timing detector and the second timing detector, control at least one of the first timing and the second timing so that the amplification device discharges when the pulsed laser light passes through a discharge space of the amplification device.
Abstract:
An extreme ultraviolet light source apparatus for supplying extreme ultraviolet light to a processing unit for performing processing by using the extreme ultraviolet light. The extreme ultraviolet light source apparatus includes: a chamber in which the extreme ultraviolet light to be supplied to the processing unit is generated; a collector mirror for collecting the extreme ultraviolet light generated in the chamber to output the extreme ultraviolet light to the processing unit; and an optical path connection module for defining a route of the extreme ultraviolet light between the chamber and the processing unit and isolating the route of the extreme ultraviolet light from outside.
Abstract:
An extreme ultraviolet light generation system used with a laser apparatus may be provided, and the extreme ultraviolet light generation system may include: a chamber including at least one window for at least one laser beam and a target supply unit for supplying a target material into the chamber; and at least one polarization control unit, provided on a laser beam path, for controlling a polarization state of the at least one laser beam.
Abstract:
An EUV light source device properly compensates the wave front of laser beam which is changed by heat. A wave front compensator and a sensor are provided in an amplification system which amplifies laser beam. The sensor detects and outputs changes in the angle (direction) of laser beam and the curvature of the wave front thereof. A wave front compensation controller outputs a signal to the wave front compensator based on the measurement results from the sensor. The wave front compensator corrects the wave front of the laser beam to a predetermined wave front according to an instruction from the wave front compensation controller.
Abstract:
A laser apparatus may include a laser oscillator capable of tuning a spectral bandwidth of a laser beam to be outputted therefrom, a spectrum detecting unit that detects a spectrum of the laser beam outputted from the laser oscillator and an attenuation unit capable of regulating light intensity of the laser beam that enters the spectrum detecting unit. The attenuation unit may include a variable attenuator whose transmittance varies depending on an incident position of the laser beam and a movement mechanism that moves the variable attenuator so that the incident position of the laser beam is changed.
Abstract:
An exposure system according to an aspect of the present disclosure includes a laser apparatus that outputs pulsed laser light, an illuminating optical system that guides the pulsed laser light to a reticle, a reticle stage, and a processor that controls the output of the pulsed laser light from the laser apparatus and the movement of the reticle performed by the reticle stage. The reticle has a first region where a first pattern is disposed and a second region where a second pattern is disposed, and the first and second regions are each a region continuous in a scan width direction perpendicular to a scan direction of the pulsed laser light, with the first and second regions arranged side by side in the scan direction. The processor controls the laser apparatus to output the pulsed laser light according to each of the first and second regions by changing the values of control parameters of the pulsed laser light in accordance with each of the first and second regions.
Abstract:
An exposure method includes reading data representing a relationship between a first parameter relating to an energy ratio between energy of first pulsed laser light having a first wavelength and energy of second pulsed laser light having a second wavelength longer than the first wavelength and a second parameter relating to a sidewall angle of a resist film that is the angle of a sidewall produced when the resist film is exposed to the first pulsed laser light and the second pulsed laser light, and determining a target value of the first parameter based on the data and a target value of the second parameter; and exposing the resist film to the first pulsed laser light and the second pulsed laser light by controlling a narrowed-line gas laser apparatus to output the first pulsed laser light and the second pulsed laser light based on the target value of the first parameter.