Abstract:
Disclosed is a mask blank substrate for use in lithography, wherein a main surface of the substrate satisfies a relational equation of (BA70−BA30)/(BD70−BD30)≧350 (%/nm), and has a maximum height (Rmax)≦1.2 nm in a relation between a bearing area (%) and a bearing depth (nm) obtained by measuring, with an atomic force microscope, an area of 1 μm×1 μm in the main surface on the side of the substrate where a transfer pattern is formed, wherein BA30 is defined as a bearing area of 30%, BA70 is defined as a bearing area of 70%, and BD70 and BD30 are defined to respectively represent bearing depths for the bearing area of 30% and the bearing area of 70%.
Abstract:
A reflective mask blank, having a phase shift film having little dependence of phase difference and reflectance on film thickness, and a reflective mask.
Abstract:
Provided is a reflective mask blank with which it is possible to further reduce the shadowing effect of a reflective mask, and also possible to form a fine and highly accurate phase-shift pattern. A reflective mask blank having, in the following order on a substrate, a multilayer reflective film and a phase-shift film that shifts the phase of EUV light, said reflective mask blank characterized in that the phase-shift film has a thin film comprising a metal-containing material that contains: ruthenium (Ru); and at least one element from among chromium (Cr), nickel (Ni), (Co), aluminum (Al), silicon (Si), titanium (Ti), vanadium (V), germanium (Ge), niobium (Nb), molybdenum (Mo), tin (Sn), tellurium (Te), hafnium (Hf), tungsten (W), and rhenium (Re).
Abstract:
Provided are a reflective mask blank, having a phase shift film having little dependence of phase difference and reflectance on film thickness, and a reflective mask. The reflective mask blank is characterized in that the phase shift film is composed of a material comprised of an alloy having two or more types of metal so that reflectance of the surface of the phase shift film is more than 3% to not more than 20% and so as to have a phase difference of 170 degrees to 190 degrees, and when a group of metal elements that satisfies the refractive index n and the extinction coefficient k of k>α*n+β is defined as Group A and a group of metal elements that satisfies the refractive index n and the extinction coefficient k of k
Abstract:
A substrate with a multilayer reflective film, a reflective mask blank, a reflective mask and a method of manufacturing a semiconductor device that can prevent contamination of the surface of the multilayer reflective film even in the case of having formed reference marks on the multilayer reflective film. A substrate with a multilayer reflective film contains a substrate and a multilayer reflective film that reflects EUV light formed on the substrate. Reference marks are formed to a concave shape on the surface of the substrate with the multilayer reflective film. The reference marks have grooves or protrusions roughly in the center. The shape of the grooves or protrusions when viewed from overhead is similar or roughly similar to the shape of the reference marks.
Abstract:
A method of manufacturing a reflective mask blank includes: forming a multilayer reflective film, which is configured to reflect EUV light, on a substrate to form a substrate with a multilayer reflective film; subjecting the substrate with a multilayer reflective film to defect inspection; forming an absorber film, which is configured to absorb the EUV light, on the multilayer reflective film of the substrate with a multilayer reflective film; forming a reflective mask blank, in which an alignment region is formed in an outer peripheral edge region of a pattern formation region by removing the absorber film so that the multilayer reflective film of an area including an element serving as a reference of defect information on the multilayer reflective film is exposed in the alignment region; and performing defect management of the reflective mask blank through use of the alignment region.
Abstract:
A reflective mask blank that comprises a multilayer reflective film 13, protective film 14, and phase-shift film 16 for shifting a phase of the EUV light, which are formed in said order on a substrate 12. The protective film 14 is made of a material containing ruthenium as a main component, and an anti-diffusion layer 15 which is an oxidized layer containing ruthenium as a main component is formed on a surface of the protective film 14, or as a part of the protective film 14 on a side adjacent to the phase-shift layer 16, so as to inhibit counter diffusion in relation to the phase-shift film 16, thereby inhibiting the thermal diffusion between the protective film 14 and the material of the phase-shift film pattern. Also, a reflective mask and method of manufacture.
Abstract:
An object of the present invention is to provide a mask blank substrate and the like that enables critical defects to be reliably detected as a result of reducing the number of detected defects, including pseudo defects, even when using highly sensitive defect inspection apparatuses that use light of various wavelengths. The present invention relates to a mask blank substrate that is used in lithography, wherein the power spectral density at a spatial frequency of 1×10−2 μm−1 to 1 μm−1, obtained by measuring a 0.14 mm×0.1 mm region on a main surface of the mask blank substrate on the side of which a transfer pattern is formed at 640×480 pixels with a white-light interferometer, is not more than 4×106 nm4, and the power spectral density at a spatial frequency of not less than 1 μm−1, obtained by measuring a 1 μm×1 μm region on the main surface with an atomic force microscope, is not more than 10 nm4.
Abstract:
To provide a reflective mask blank which may inhibit a variation in reflectance with respect to EUV light due to counter diffusion between a protective film and a material of an adjacent phase-shift film pattern caused by thermal diffusion even if the power of an exposure light source of an EUV exposure machine becomes high; a reflective mask manufactured therefrom; and a method for manufacturing a semiconductor device. The reflective mask blank comprises a multilayer reflective film 13, protective film 14, and phase-shift film 16 for shifting a phase of the EUV light, which are formed in said order on a substrate 12. The protective film 14 is made of a material containing ruthenium as a main component, the phase-shift film 16 has a tantalum-based material layer comprising tantalum, and an anti-diffusion layer 15 comprising ruthenium and oxygen is formed on a surface of the protective film 14, or as a part of the protective film 14 on a side adjacent to the phase-shift layer 16, so as to inhibit counter diffusion in relation to the phase-shift film 16, thereby inhibiting the thermal diffusion between the protective film 14 and the material of the phase-shift film pattern.
Abstract:
Provided is a mask blank glass substrate that has high surface smoothness, that is formed with a fiducial mark capable of improving the detection accuracy of a defect position or the like, and that enables reuse or recycling of a glass substrate included therein. An underlayer is formed on a main surface, on the side where a transfer pattern is to be formed, of a glass substrate for a mask blank. The underlayer serves to reduce surface roughness of the main surface of the glass substrate or to reduce defects of the main surface of the glass substrate. A surface of the underlayer is a precision-polished surface. A fiducial mark which provides a reference for a defect position in defect information is formed on the underlayer.