Monolithic splitter using re-entrant poly silicon waveguides

    公开(公告)号:US10811751B2

    公开(公告)日:2020-10-20

    申请号:US16461554

    申请日:2016-12-30

    Abstract: Embodiments of the invention include an electromagnetic waveguide and methods of forming the electromagnetic waveguide. In an embodiment the electromagnetic waveguide includes a first spacer and a second spacer. In an embodiment, the first and second spacer each have a reentrant profile. The electromagnetic waveguide may also include a conductive body formed between in the first and second spacer, and a void formed within the conductive body. In an additional embodiment, the electromagnetic waveguide may include a first spacer and a second spacer. Additionally, the electromagnetic waveguide may include a first portion of a conductive body formed along sidewalls of the first and second spacer and a second portion of the conductive body formed between an upper portion of the first portion of the conductive body. In an embodiment, the first portion of the conductive body and the second portion of the conductive body define a void through the electromagnetic waveguide.

    INTEGRATION OF PASSIVE COMPONENTS IN III-N DEVICES

    公开(公告)号:US20200303371A1

    公开(公告)日:2020-09-24

    申请号:US16362269

    申请日:2019-03-22

    Abstract: Disclosed herein are integrated circuit structures, packages, and devices that include resistors and/or capacitors which may be provided on the same substrate/die/chip as III-N devices, e.g., III-N transistors. An integrated circuit structure, comprising a base structure comprising a III-N material, the base structure having a conductive region of a doped III-N material. The IC structure further comprises a first contact element, including a first conductive element, a dielectric element, and a second conductive element, wherein the dielectric element is between the first conductive element and the second conductive element, and wherein the first conductive element is between the conductive region and the dielectric element. The IC structure further comprises a second contact element electrically coupled to the first contact element via the conductive region.

    STACKED TRANSISTORS WITH STRAIN MATERIALS ON SOURCE AND DRAIN

    公开(公告)号:US20250113561A1

    公开(公告)日:2025-04-03

    申请号:US18476624

    申请日:2023-09-28

    Abstract: In stacked transistor device, such as a complementary field-effect-transistor (CFET) device, different strain materials may be used in different layers, e.g., a tensile material is deposited in a first isolation region in the PMOS layer, and a compressive material is deposited in second isolation region in the NMOS layer. The strain materials may be stacked, such that the second isolation region may be positioned over the first isolation region. In some cases, in one or both of the isolation regions, a liner material is included between the strain material and the source and drain regions. Certain embodiments provide independent tuning of strain forces in a stacked transistor device. Different materials are selected for different layers in the stacked device to provide favorable performance enhancement or tuning (e.g., adjustment of the threshold voltage) in NMOS and PMOS layers.

Patent Agency Ranking