Abstract:
An electronic device can include an inductor overlying a shock-absorbing layer. In one aspect, the electronic device can include a substrate, an interconnect level overlying the substrate, and the shock-absorbing layer overlying the interconnect level. The inductor can include conductive traces and looped wires. The conductive traces can be attached to the conductive traces over the shock-absorbing layer. In another aspect, a process can be used to form the electronic device including the inductor. In still another aspect, an electronic device can a toroidal-shaped inductor that includes linear inductor segments that are connected in series.
Abstract:
An electronic device can include an inductor overlying a shock-absorbing layer. In one aspect, the electronic device can include a substrate, an interconnect level overlying the substrate, and the shock-absorbing layer overlying the interconnect level. The inductor can include conductive traces and looped wires. The conductive traces can be attached to the conductive traces over the shock-absorbing layer. In another aspect, a process can be used to form the electronic device including the inductor. In still another aspect, an electronic device can a toroidal-shaped inductor that includes linear inductor segments that are connected in series.
Abstract:
In accordance with one embodiment, a stress buffer (40) is formed between a power metal structure (90) and passivation layer (30). The stress buffer (40) reduces the effects of stress imparted upon the passivation layer (30) by the power metal structure (90). In accordance with an alternative embodiment, a power metal structure (130A) is partitioned into segments (1091), whereby electrical continuity is maintained between the segments (1090) by remaining portions of a seed layer (1052) and adhesion/barrier layer (1050). The individual segments (1090) impart a lower peak stress than a comparably sized continuous power metal structure (9).
Abstract:
A first pattern of bumps and a second pattern of bumps are formed on a substrate (10) with bumps (14,15). During a transfer process, only the bumps (14) of the first pattern of bumps are transferred to pad extensions (20) of a device (17). The bumps (15) of the second pattern of bumps are not affected by this process and can be later transferred to a second device.
Abstract:
An embedded device 105 is assembled within a flexible circuit assembly 30 with the embedded device mid-plane intentionally located in proximity to the flexible circuit assembly central plane 115 to minimize stress effects on the embedded device. The opening 18, for the embedded device, is enlarged in an intermediate layer 10 to enhance flexibility of the flexible circuit assembly.
Abstract:
In a semiconductor wafer, the polyimide film underneath a power metal structure is partially etched to create corresponding surface depressions of the conformal top power metal. The depressions at the surface of power metal are visible under optical microscopy. Arrangement of the depressions in a pattern facilitates the alignment of probe needles, set-up of automated wire bonding and microscopic inspection for precise alignment of wire bonds.
Abstract:
A stacked semiconductor device assembly (20) includes a device (24) having conductive traces (34) formed therein, and conductive interconnects (28) electrically connected to the conductive traces (34). Another device (26) has conductive traces (44) formed therein and device pads (54) formed on an outer surface (52) of the device (26). A method (120) entails attaching (84) a magnetic core (30) to an outer surface (42) of the device (24) and forming (92) the conductive interconnects (28) on the outer surface (42) using a stud bumping technique such that the interconnects (28) surround the magnetic core (30). The conductive interconnects (28) are coupled (126) with the device pads (54) using thermocompression bonding to couple the device (26) with the device (24) to form a continuous device coil (22) wrapped around the magnetic core (30) from an alternating electrical connection of the traces (34), the conductive interconnects (28), and the traces (44).
Abstract:
In a semiconductor wafer, the polyimide film underneath a power metal structure is partially etched to create corresponding surface depressions of the conformal top power metal. The depressions at the surface of power metal are visible under optical microscopy. Arrangement of the depressions in a pattern facilitates the alignment of probe needles, set-up of automated wire bonding and microscopic inspection for precise alignment of wire bonds.
Abstract:
A stacked semiconductor device assembly (20) includes a device (24) having conductive traces (34) formed therein, and conductive interconnects (28) electrically connected to the conductive traces (34). Another device (26) has conductive traces (44) formed therein and device pads (54) formed on an outer surface (52) of the device (26). A method (120) entails attaching (84) a magnetic core (30) to an outer surface (42) of the device (24) and forming (92) the conductive interconnects (28) on the outer surface (42) using a stud bumping technique such that the interconnects (28) surround the magnetic core (30). The conductive interconnects (28) are coupled (126) with the device pads (54) using thermocompression bonding to couple the device (26) with the device (24) to form a continuous device coil (22) wrapped around the magnetic core (30) from an alternating electrical connection of the traces (34), the conductive interconnects (28), and the traces (44).