POLYMER-DERIVED ELASTIC HEAT SPREADER FILMS

    公开(公告)号:US20210079282A1

    公开(公告)日:2021-03-18

    申请号:US16574634

    申请日:2019-09-18

    Abstract: Provided is an elastic heat spreader film comprising: a) a graphitic film prepared from graphitization of a polymer film or pitch film, wherein the graphitic film has graphitic crystals parallel to one another and parallel to a film plane, having an inter-graphene spacing less than 0.34 nm, and wherein the graphitic film alone, after compression, has a thermal conductivity at least 600 W/mK, an electrical conductivity no less than 4,000 S/cm, and a physical density greater than 1.7 g/cm3; and b) an elastomer or rubber that permeates into the graphitic film from at least a surface of the film; wherein the elastomer or rubber is in an amount from 0.001% to 30% by weight based on the total heat spreader film weight. The elastic heat spreader film has a fully recoverable tensile elastic strain from 2% to 100% and an in-plane thermal conductivity from 100 W/mK to 1,750 W/mK.

    PRODUCTION PROCESS FOR GRAPHENE-BASED ELASTIC HEAT SPREADER FILMS

    公开(公告)号:US20210060876A1

    公开(公告)日:2021-03-04

    申请号:US16559004

    申请日:2019-09-03

    Abstract: Provided is a process for producing an elastic heat spreader film, the process comprising: (a) providing a layer of an aggregate or cluster of multiple graphene sheets; (b) impregnating an elastomer or rubber into the aggregate or cluster as a binder material or a matrix material to produce an impregnated aggregate or cluster, wherein the multiple graphene sheets are bonded by the binder material or dispersed in the matrix material and the elastomer or rubber is in an amount from 0.001% to 20% by weight based on the total heat spreader film weight; and (c) compressing the impregnated aggregate or cluster to produce the heat spreader film wherein the multiple graphene sheets are substantially aligned to be parallel to one another and wherein the elastic heat spreader film has a fully recoverable tensile elastic strain from 2% to 100% and an in-plane thermal conductivity from 200 W/mK to 1,750 W/mK.

    Highly conducting and transparent film and process for producing same

    公开(公告)号:US10468152B2

    公开(公告)日:2019-11-05

    申请号:US13815316

    申请日:2013-02-21

    Abstract: An optically transparent and electrically conductive film composed of metal nanowires or carbon nanotubes combined with pristine graphene with a metal nanowire-to-graphene or carbon nanotube-to-graphene weight ratio from 1/99 to 99/1, wherein the pristine graphene is single-crystalline and contains no oxygen and no hydrogen, and the film exhibits an optical transparence no less than 80% and sheet resistance no higher than 300 ohm/square. This film can be used as a transparent conductive electrode in an electro-optic device, such as a photovoltaic or solar cell, light-emitting diode, photo-detector, touch screen, electro-wetting display, liquid crystal display, plasma display, LED display, a TV screen, a computer screen, or a mobile phone screen.

    PROCESS FOR GRAPHENE-MEDIATED METALLIZATION OF POLYMER FILMS

    公开(公告)号:US20190292676A1

    公开(公告)日:2019-09-26

    申请号:US15943081

    申请日:2018-04-02

    Abstract: Provided is process for producing a surface-metalized polymer film, the process comprising: (a) preparing a graphene dispersion comprising multiple graphene sheets and an optional conducive filler dispersed in a first liquid medium, which is an adhesive monomer/oligomer or contains a liquid adhesive monomer/oligomer/polymer dissolved in a solvent; (b) feeding a continuous polymer film from a feeder roller into a deposition zone, wherein the graphene dispersion is dispensed to deposit the graphene sheets to a surface of the polymer film; (c) moving the graphene-coated polymer film into a metallization chamber which accommodates a plating solution therein for plating a layer of a desired metal onto the graphene-coated polymer film to obtain a surface-metalized polymer film; and (d) operating a winding roller to collect the surface-metalized polymer film.

    PRODUCTS CONTAINING GRAPHENE-MEDIATED METALLIZED POLYMER COMPONENT

    公开(公告)号:US20190143656A1

    公开(公告)日:2019-05-16

    申请号:US15924633

    申请日:2018-03-19

    Abstract: Provided is a surface-metalized polymer article comprising a polymer component having a surface, a first layer of combined multiple graphene sheets and an optional conductive filler (e.g. metal nanowires or carbon nanofibers) coated on the polymer component surface, and a second layer of a plated metal deposited on the first layer, wherein the multiple graphene sheets contain single-layer or few-layer graphene, and wherein the multiple graphene sheets and conductive filler are bonded to the polymer component surface with or without an adhesive resin. In certain embodiments, this article is selected from a vehicle component, an electronic appliance, an electronic device, a food packaging film or bag, a protective clothing, an antistatic film or bag, a susceptor in microwave cooking, a blanket, an anti-reflection accessary, a toy, a product label, a mailer, a sports card, a greeting card, a solar control window film, or a stamping foil.

    UNITARY GRAPHENE-BASED COMPOSITE MATERIAL
    28.
    发明申请

    公开(公告)号:US20180058782A1

    公开(公告)日:2018-03-01

    申请号:US15789580

    申请日:2017-10-20

    CPC classification number: F28F21/02 C09K5/14 F28D2021/0029 F28F21/00

    Abstract: A unitary graphene-based integrated heat sink comprising a heat collection member (base) and at least one heat dissipation member (e.g. fins) integral to the baser, wherein the base is configured to be in thermal contact with a heat source, collects heat therefrom, and dissipates heat through the fins. The unitary graphene material is obtained from heat-treating a graphene oxide gel at a temperature higher than 100° C., 500° C., 1,250° C., or 2,000° C., and contains chemically bonded graphene molecules having inter-graphene distance of 0.3354-0.4 nm (preferably mm or cm), exhibiting a degree of graphitization preferably from 1% to 100% and a Mosaic spread value less than 0.7 (preferably no greater than 0.4). The finned heat sink may also be made from a filler-reinforced graphene matrix composite.

    Graphene-enhanced vapor-based heat transfer device

    公开(公告)号:US11566852B2

    公开(公告)日:2023-01-31

    申请号:US16395800

    申请日:2019-04-26

    Abstract: Provided is a vapor-based heat transfer apparatus (e.g. a vapor chamber or a heat pipe), comprising: a hollow structure having a hollow chamber enclosed inside a sealed envelope or container made of a thermally conductive material, a wick structure in contact with one or a plurality of walls of the hollow structure, and a working liquid within the hollow structure and in contact with the wick structure, wherein the wick structure comprises a graphene material.

Patent Agency Ranking