Abstract:
A multilayer printed circuit board is provided having a first dielectric layer and a first plating resist selectively positioned in the first dielectric layer. A second plating resist may be selectively positioned in the first dielectric layer or a second dielectric layer, the second plating resist separate from the first plating resist. A through hole extends through the first dielectric layer, the first plating resist, and the second plating resist. An interior surface of the through hole is plated with a conductive material except along a length between the first plating resist and the second plating resist. This forms a partitioned plated through hole having a first via segment electrically isolated from a second via segment.
Abstract:
A multilayer printed circuit board is provided having a first dielectric layer and a first plating resist selectively positioned in the first dielectric layer. A second plating resist may be selectively positioned in the first dielectric layer or a second dielectric layer, the second plating resist separate from the first plating resist. A through hole extends through the first dielectric layer, the first plating resist, and the second plating resist. An interior surface of the through hole is plated with a conductive material except along a length between the first plating resist and the second plating resist. This forms a partitioned plated through hole having a first via segment electrically isolated from a second via segment.
Abstract:
A multilayer printed circuit board is provided having a first dielectric layer and a first plating resist selectively positioned in the first dielectric layer. A second plating resist may be selectively positioned in the first dielectric layer or a second dielectric layer, the second plating resist separate from the first plating resist. A through hole extends through the first dielectric layer, the first plating resist, and the second plating resist. An interior surface of the through hole is plated with a conductive material except along a length between the first plating resist and the second plating resist. This forms a partitioned plated through hole having a first via segment electrically isolated from a second via segment.
Abstract:
Cost effective and efficient methods to maximize printed circuit board (PCB) utilization with minimized signal degradation are provided. The methods include electrically isolating a segmented via structure by controlling the formation of a conductive material within a plated via structure by utilizing different diameter drills within a via structure for trimming the conductive material at the via shoulder (i.e., the rim of a drilled two diameter hole boundary). The trimmed portion may be voided in the via structure for allowing electrically isolated plated through-hole (PTH) segments. One or more areas of trimmed rims within the via structure are used to form multiple stair like diameter holes to create one or more voids in the via structure. As a result, the formation of conductive material within the via structure may be limited to those areas necessary for the transmission of electrical signals.
Abstract:
A multilayer printed circuit board is provided having a first conductive layer and a first plating resist selectively positioned within the first conductive layer. A second plating resist may be selectively positioned within a second conductive layer. A through hole extends through the first plating resist in the first conductive layer and the second plating resist in the second conductive layer. An interior surface of the through hole is plated with a conductive material except along a length between the first plating resist and the second plating resist. This forms a partitioned plated through hole having a first via segment electrically isolated from a second via segment.
Abstract:
Laminate structures including hole plugs, and methods for forming a hole plug in a laminate structure are provided. A laminate structure may be formed with at least a dielectric layer and a first conductive foil on a first side of the dielectric layer. A blind hole may be formed in the laminate structure extending toward the first conductive foil from a second side of the dielectric layer and at least partially through the dielectric layer, the blind hole including a hole depth to hole diameter aspect ratio of less than ten (10) to one (1). Via fill ink may be disposed in the blind hole, and the via fill ink may be dried and/or cured to form a hole plug.
Abstract:
A multilayer printed circuit board is provided having a first conductive layer and a first plating resist selectively positioned within the first conductive layer. A second plating resist may be selectively positioned within a second conductive layer. A through hole extends through the first plating resist in the first conductive layer and the second plating resist in the second conductive layer. An interior surface of the through hole is plated with a conductive material except along a length between the first plating resist and the second plating resist. This forms a partitioned plated through hole having a first via segment electrically isolated from a second via segment.
Abstract:
A multilayer printed circuit board is provided having a first conductive layer and a first plating resist selectively positioned within the first conductive layer. A second plating resist may be selectively positioned within a second conductive layer. A through hole extends through the first plating resist in the first conductive layer and the second plating resist in the second conductive layer. An interior surface of the through hole is plated with a conductive material except along a length between the first plating resist and the second plating resist. This forms a partitioned plated through hole having a first via segment electrically isolated from a second via segment.
Abstract:
A method of making printed circuit board vias using a double drilling and plating method is disclosed. A first hole is drilled in a core, the first hole having a first diameter. The first hole is filled and/or plated with an electrically conductive material. A circuit pattern may be formed on one or two conductive layers of the core. A multilayer structure may then be formed including a plurality of cores that also include pre-drilled and plated via holes, wherein at least some of the pre-drilled and plated via holes are aligned with the first hole. A second hole is then drilled within the first hole and the aligned pre-drilled and plated holes, the second hole having a second diameter where the second diameter is smaller than the first diameter. A conductive material is then plated to an inner surface of the second hole.
Abstract:
A multilayer printed circuit board is provided having a first conductive layer and a first plating resist selectively positioned within the first conductive layer. A second plating resist may be selectively positioned within a second conductive layer. A through hole extends through the first plating resist in the first conductive layer and the second plating resist in the second conductive layer. An interior surface of the through hole is plated with a conductive material except along a length between the first plating resist and the second plating resist. This forms a partitioned plated through hole having a first via segment electrically isolated from a second via segment.