Abstract:
In a computer-implemented method and system for capturing the condition of a structure, the structure is scanned with a three-dimensional (3D) scanner. The 3D scanner generates 3D data. A point cloud or 3D model is constructed from the 3D data. The point cloud or 3D model is then analyzed to determine the condition of the structure.
Abstract:
In a computer-implemented method and system for capturing the condition of a structure, the structure is scanned with a three-dimensional (3D) scanner. The 3D scanner generates 3D data. A point cloud or 3D model is constructed from the 3D data. The point cloud or 3D model is then analyzed to determine the condition of the structure.
Abstract:
The method and system may be used to provide an indication of a color value for a particular siding sample and to color match a specific siding product to the color value of the siding sample. The system receives a digital image of a siding sample and a desired color value to be matched. A color query module plots this desired color value as a desired color point in a multidimensional color space together with a plurality of color reference points. Each color reference point represents the color value of an existing siding product. The system determines a “distance” between the desired color point and each plotted color reference point within the color space and identifies the siding product associated with the color reference point that is located the shortest distance to the desired color point within the color space.
Abstract:
In a system and method for inspecting a property, a microphone receives one or more audio waves propagating from a structure. One or more processors generate a 3D point cloud based on the received audio waves, analyzed the generated 3D point cloud to identify features of a surface or subsurface of the structure, and generate an estimate of a condition of the surface or subsurface.
Abstract:
In a system and method for inspecting a property, a microphone receives one or more audio waves propagating from a structure. One or more processors generate a 3D point cloud based on the received audio waves, analyzed the generated 3D point cloud to identify features of a surface or subsurface of the structure, and generate an estimate of a condition of the surface or subsurface.
Abstract:
In a computer-implemented method and system for capturing the condition of a structure, the structure is scanned with a three-dimensional (3D) scanner. The 3D scanner generates 3D data. A point cloud or 3D model is constructed from the 3D data. The point cloud or 3D model is then analyzed to determine the condition of the structure.
Abstract:
In a computer-implemented method and system for capturing the condition of a structure, the structure is scanned with a three-dimensional (3D) scanner. The 3D scanner generates 3D data. A point cloud or 3D model is constructed from the 3D data. The point cloud or 3D model is then analyzed to determine the condition of the structure.
Abstract:
The method and system may be used to provide an indication of a color value for a particular siding sample and to color match a specific siding product to the color value of the siding sample. The system receives a digital image of a siding sample and a desired color value to be matched. A color query module plots this desired color value as a desired color point in a multidimensional color space together with a plurality of color reference points. Each color reference point represents the color value of an existing siding product. The system determines a “distance” between the desired color point and each plotted color reference point within the color space and identifies the siding product associated with the color reference point that is located the shortest distance to the desired color point within the color space.
Abstract:
Disclosed systems and methods automatically assess buildings and structures. A device may receive one or more images of a structure, such as a building or portion of the building, and then label and extract relevant data. The device may then train a system to automatically assess other data describing similar buildings or structures based on the labeled and extracted data. After training, the device may then automatically assess new data, and the assessment results may be sent directly to a client or to an agent for review and/or processing.
Abstract:
A method of determining damage to property includes inputting historical data into a machine learning model to identify an insured type, features, and/or characteristics. The method may include identifying a peril, repair and/or replacement cost of the vehicle by analyzing a digital image from a device of an insured, the digital image depicting damage to the vehicle, The method may include inputting the digital image into the trained machine learning model to identify a type, feature, and/or characteristic of the vehicle, and may include identifying a peril, repair, and/or replacement cost associated with the vehicle. A method may include receiving and/or retrieving free-form text associated with an insurance claim and/or a vehicle, identifying at least one key word composing the free-form text, and determining based on the at least one key word a cause of loss and/or peril that caused damage to the vehicle.