Abstract:
Air atomizing induction charging spray nozzles suited for use with conductive liquids, solutions, suspensions or emulsions. These systems feature a high level of the spray charging at low induction--electrode voltage and current. Primary benefits include consistent, reliable operation in harsh agricultural and industrial environments with a wide range of spray formulations, especially those having relatively high concentrations of abrasive and conductive materials. Internal and external surfaces are configured to minimize potential differences between electrode and ground. Such nozzles may employ external cavities, field concentrators, hoods and other structures and arrangements to affect aerodynamic flow of gases within the vicinity of the nozzles and electrostatic and electrodynamics effects such as those caused by electrical fields within the vicinity of the nozzles.
Abstract:
An electrostatic sprayer system for dispensing and dispersing a liquid containing a spray compound includes a spray cloud dispersal feature that reduces the time that a residual spray cloud containing droplets including the spray compound remains suspended after spraying. A method of dispersing the residual spray cloud is implemented by a control system that causes a flow control system to deliver a non-active gas or liquid in conjunction with stopping delivery of the liquid containing the spray agent and charged with the same polarity, so that a charged cloud of the non-active gas or liquid, which may be air, displaces the suspended active fluid particles. The non-active gas or liquid may be dispensed for a predetermined time interval as determined by the control system, or the operator may control the time interval during which that the non-active fluid is dispensed.
Abstract:
An electrostatic sprayer system for spraying a liquid includes a control system that provides user certification status control and usage reporting for the electrostatic sprayer system, including authorizing the user in conformity with the user's certification status and tracking the user, material(s), locations, duration of operation and amount of material being sprayed. The sprayer system includes a sprayer head having an outlet for dispensing a liquid that has been atomized and electrically charged via an electrode of the sprayer system, a vessel containing the liquid prior to dispensing, a power supply for providing a voltage and current to the electrode, a flow controller for controlling flow of liquid emitted from an outlet of the sprayer head, and a control system for controlling the flow controller in conformity with a certification status of a user of the sprayer system and reporting usage of the sprayer system to a database.
Abstract:
An electrostatic sprayer for spraying a liquid includes a nozzle formed from a nozzle body that has an inlet for receiving a liquid and a liquid tip having an outlet for ejection of the liquid to form a liquid spray. The nozzle also includes an electrode disposed around the outlet of the liquid tip for charging the liquid. The electrode is captive in a removable cap that is that is detachably secured, e.g., via threaded connection, to the sprayer, so that the cap is removable for servicing, cleaning or replacement of nozzle components such as the liquid tip. The nozzle includes a calibratable stop mechanism for controlling a position of the electrode with respect to the outlet of the liquid tip when the cap is installed. The stop mechanism may be provided by a locking ring around a barrel of the sprayer that stops rotation of the cap.
Abstract:
An electrostatic sprayer for spraying a liquid includes a nozzle formed from a nozzle body that has an inlet for receiving a liquid and a liquid tip having an outlet for ejection of the liquid to form a liquid spray. The nozzle also includes an electrode disposed around the outlet of the liquid tip for charging the liquid. The electrode is captive in a removable cap that is that is detachably secured, e.g., via threaded connection, to the sprayer, so that the cap is removable for servicing, cleaning or replacement of nozzle components such as the liquid tip. The nozzle includes a calibratable stop mechanism for controlling a position of the electrode with respect to the outlet of the liquid tip when the cap is installed. The stop mechanism may be provided by a locking ring around a barrel of the sprayer that stops rotation of the cap.
Abstract:
A spray nozzle system includes separate air outlets to deliver one or more streams of supplemental warming or drying air. The air may be applied while spray is emitted from the nozzle to increase the spray cloud temperature, or may be applied for warming or drying before or after the spray application, with the spray turned off. In the case of air-atomizing nozzles, the air is delivered through low pressure ports separately from the atomizing or pattern shaping air to minimize the expansion cooling effect. In another implementation, the air is redirected from the nozzle using a control valve which proportions the amount of airflow directed for atomization, pattern shaping and drying.
Abstract:
A nozzle includes a body having a first bore and a first liquid inlet. A liquid tip assembly, including a second bore and second liquid inlet, is inserted into the first bore with the first and second liquid inlets axially aligned. Sealing rings between the liquid tip assembly and first bore define an annular fluid path coupling the first and second liquid inlets. The liquid tip assembly further includes a liquid opening that is sealed by an axially moveable fluid tip positioned in the second bore. A slidable seal is formed between the fluid tip and second bore. A front of the body includes an aperture configured to receive an air cap secured to the body by a retaining ring. The air cap includes an air opening associated with the liquid opening to provide atomizing air. The nozzle may be easily assembled and disassembled from a front of the nozzle.
Abstract:
A gantry tower spraying system with a cartridge/receptacle assembly includes a gantry and a spray assembly coupled to the gantry to allow for translational movement of the spray assembly along the gantry. The spray assembly includes a receptacle for receiving a cartridge containing a cosmetic liquid for skin treatment, and a spray nozzle coupled to the receptacle for receiving the cosmetic liquid and dispensing the cosmetic liquid in a spray. The receptacle has an inner surface of a size and shape to generally conform to a size and shape of a portion of an outer surface of the cartridge. The spraying system can further be provided with an oscillation mechanism adapted to cause oscillation of the spray nozzle. The bottle can be provided with a keying mechanism for engaging a corresponding key structure of the receptacle.
Abstract:
A gantry tower spraying system with a cartridge/receptacle assembly includes a gantry and a spray assembly coupled to the gantry to allow for translational movement of the spray assembly along the gantry. The spray assembly includes a receptacle for receiving a cartridge containing a cosmetic liquid for skin treatment, and a spray nozzle coupled to the receptacle for receiving the cosmetic liquid and dispensing the cosmetic liquid in a spray. The receptacle has an inner surface of a size and shape to generally conform to a size and shape of a portion of an outer surface of the cartridge. The spraying system can further be provided with an oscillation mechanism adapted to cause oscillation of the spray nozzle. The bottle can be provided with a keying mechanism for engaging a corresponding key structure of the receptacle.
Abstract:
A spray nozzle system for skin treatments includes separate air outlets moving over the skin surface to deliver one or more streams of supplemental air for the purpose of warming or drying the skin surface to improve efficacy and comfort of the spraying experience. The drying air from the auxiliary ports may be applied while spray is emitted from the nozzle to increase the spray cloud temperature, or may be applied before or after the spray application, with the spray turned off, to warm or dry the skin. A heating source is provided to warm the air directed through one or more supplemental air ports. In the case of air-atomizing nozzles, the supplemental air is delivered through low pressure ports separately from the air emitted through the nozzle's atomizing and pattern shaping orifices to minimize the expansion cooling effect inherent with the spray nozzle ports. In another implementation, the airflow is redirected from the nozzle jets to one or more of the supplemental ports using a control valve which proportions the amount of airflow directed to the main atomizer air jets, the pattern shaping air jets and the supplemental air for drying the skin.