Abstract:
A metal gate transistor includes a substrate, a metal gate on the substrate, and a source/drain region in the substrate adjacent to the metal gate. The metal gate includes a high-k dielectric layer, a bottom barrier metal (BBM) layer comprising TiSiN on the high-k dielectric layer, a TiN layer on the BBM layer, a TiAl layer between the BBM layer and the TiN layer, and a low resistance metal layer on the TiN layer.
Abstract:
The present invention provides a complementary metal oxide semiconductor device, comprising a PMOS and an NMOS. The PMOS has a P type metal gate, which comprises a bottom barrier layer, a P work function metal (PWFM) layer, an N work function tuning (NWFT) layer, an N work function metal (NWFM) layer and a metal layer. The NMOS has an N type metal gate, which comprises the NWFT layer, the NWFM layer and the low-resistance layer. The present invention further provides a method of forming the same.
Abstract:
A fabrication method of semiconductor device having metal gate includes providing a substrate, successively forming a gate insulating layer and a bottom barrier layer on the surface of the substrate, forming a work function layer covering the bottom barrier layer, removing the work function layer, and forming a top barrier layer on the bottom barrier layer to be directly contact with the bottom barrier layer, and forming a metal layer on the top bottom barrier layer.
Abstract:
The present invention provides a complementary metal oxide semiconductor device, comprising a PMOS and an NMOS. The PMOS has a P type metal gate, which comprises a bottom barrier layer, a P work function metal (PWFM) layer, an N work function tuning (NWFT) layer, an N work function metal (NWFM) layer and a metal layer. The NMOS has an N type metal gate, which comprises the NWFT layer, the NWFM layer and the low-resistance layer. The present invention further provides a method of forming the same.
Abstract:
A semiconductor structure and a manufacturing method thereof are disclosed. The semiconductor structure includes an isolation layer, a gate dielectric layer, a first work function metal, a first bottom barrier layer, a second work function metal, and a first top barrier layer. The isolation layer is formed on a substrate and has a first gate trench. The gate dielectric layer is formed in the first gate trench. The first work function metal is formed on the gate dielectric layer in the first gate trench. The first bottom barrier layer is formed on the first work function metal. The second work function metal is formed on the first bottom barrier layer. The first top barrier layer is formed on the second work function metal.
Abstract:
A semiconductor device having metal gate includes a substrate, a first metal gate positioned on the substrate, and a second metal gate positioned on the substrate. The first metal gate includes a first p-work function metal layer, an n-work function metal layer, and a gap-filling metal layer. The second metal gate includes a second p-work function metal layer, the n-work function metal layer, and the gap-filling metal layer. The first p-work function metal layer and the second p-work function metal layer include a same p-typed metal material. A thickness of the first p-work function metal layer is larger than a thickness of the second p-work function metal layer. The first p-work function metal layer, the second p-work function metal layer, and the n-work function metal layer include a U shape.
Abstract:
An oxide semiconductor field effect transistor (OSFET) includes a first insulating layer, a source, a drain, a U-shaped channel layer and a metal gate. The first insulating layer is disposed on a substrate. The source and the drain are disposed in the first insulating layer. The U-shaped channel layer is sandwiched by the source and the drain. The metal gate is disposed on the U-shaped channel layer, wherein the U-shaped channel layer includes at least an oxide semiconductor layer. The present invention also provides a method for forming said oxide semiconductor field effect transistor.
Abstract:
A semiconductor structure for wafer level bonding includes an interconnecting layer on a substrate, a bonding dielectric layer on the interconnecting layer, and a bonding pad in the bonding dielectric layer. The bonding pad includes a top surface exposed from the bonding dielectric layer, a bottom surface opposite to the top surface and physically contacting a dielectric portion of the interconnecting layer, and a sidewall between the top surface and the bottom surface. A bottom angle between the sidewall and the bottom surface is smaller than 90 degrees, and the bonding pad is not electrically connected to the interconnecting layer.
Abstract:
A semiconductor structure for wafer level bonding includes a bonding dielectric layer disposed on a substrate and a bonding pad disposed in the bonding dielectric layer. The bonding pad includes a top surface exposed from the bonding dielectric layer, a bottom surface opposite to the top surface, and a sidewall between the top surface and the bottom surface. A bottom angle between the bottom surface and sidewall of the bonding pad is smaller than 90 degrees.
Abstract:
An oxide semiconductor field effect transistor (OSFET) includes a first insulating layer, a source, a drain, a U-shaped channel layer and a metal gate. The first insulating layer is disposed on a substrate. The source and the drain are disposed in the first insulating layer. The U-shaped channel layer is sandwiched by the source and the drain. The metal gate is disposed on the U-shaped channel layer, wherein the U-shaped channel layer includes at least an oxide semiconductor layer. The present invention also provides a method for forming said oxide semiconductor field effect transistor.