Abstract:
A semiconductor device includes a fin structure, an isolation structure, a gate structure and an epitaxial structure. The fin structure protrudes from the surface of the substrate and includes a top surface and two sidewalls. The isolation structure surrounds the fin structure. The gate structure overlays the top surface and the two sidewalls of a portion of the fin structure, and covers a portion of the isolation structure. The isolation structure under the gate structure has a first top surface and the isolation structure at two sides of the gate structure has a second top surface, wherein the first top surface is higher than the second top surface. The epitaxial layer is disposed at one side of the gate structure and is in direct contact with the fin structure.
Abstract:
An epitaxial process includes the following steps. A first gate and a second gate are formed on a substrate. Two first spacers are formed on the substrate beside the first gate and the second gate respectively. Two first epitaxial layers having first profiles are formed in the substrate beside the two first spacers respectively. A second spacer material is formed to cover the first gate and the second gate. The second spacer material covering the second gate is etched to form a second spacer on the substrate beside the second gate and expose the first epitaxial layer beside the second spacer while reserving the second spacer material covering the first gate. The exposed first epitaxial layer in the substrate beside the second spacer is replaced by a second epitaxial layer having a second profile different from the first profile.
Abstract:
The present invention provides a method for forming a fin structure comprising the following steps: first, a multiple-layer structure is formed on a substrate; then, a sacrificial pattern is formed on the multiple-layer structure, a spacer is formed on the sidewall of the sacrificial pattern and disposed on the multiple-layer structure, the sacrificial pattern is removed, the spacer is used as a cap layer to etch parts of the multiple-layer structure, and then the multiple-layer structure is used as a cap layer to etch the substrate and to form at least one fin structure in the substrate.
Abstract:
A semiconductor device having a metal gate includes a substrate having a first gate trench and a second gate trench formed thereon, a gate dielectric layer respectively formed in the first gate trench and the second gate trench, a first work function metal layer formed on the gate dielectric layer in the first gate trench and the second gate trench, a second work function metal layer respectively formed in the first gate trench and the second gate trench, and a filling metal layer formed on the second work function metal layer. An opening width of the second gate trench is larger than an opening width of the first gate trench. An upper area of the second work function metal layer in the first gate trench is wider than a lower area of the second work function metal layer in the first gate trench.
Abstract:
A method for fabricating a semiconductor device is provided. A fin of a first conductivity type is formed on a substrate of the first conductivity type. A gate is formed on the substrate, wherein the gate covers a portion of the fin. Source and drain regions of a second conductivity type are formed in the fin at respective sides of the gate. A punch-through stopper (PTS) of the first conductivity type is formed in the fin underlying the gate and between the source and drain regions, wherein the PTS has an impurity concentration higher than that of the substrate. A first impurity of the second conductivity type is implanted into the PTS, so as to compensate the impurity concentration of the PTS.
Abstract:
A method for fabricating a semiconductor device includes the steps of: providing a substrate having a high-voltage (HV) region and a low-voltage (LV) region; forming a base on the HV region and fin-shaped structures on the LV region; forming a first insulating around the fin-shaped structures; removing the base, the first insulating layer, and part of the fin-shaped structures to form a first trench in the HV region and a second trench in the LV region; forming a second insulating layer in the first trench and the second trench; and planarizing the second insulating layer to form a first shallow trench isolation (STI) on the HV region and a second STI on the LV region.
Abstract:
A method for fabricating a semiconductor device includes the steps of first defining a scribe line on a front side of a wafer, in which the wafer includes an inter-metal dielectric (IMD) layer disposed on a substrate and an alternating stack disposed on the IMD layer. Next, part of the alternating stack is removed to form a trench on the front side of the wafer, a dielectric layer is formed in the trench, and then a dicing process is performed along the scribe line from a back side of the wafer to divide the wafer into chips.
Abstract:
A method for fabricating a semiconductor device includes first providing a substrate having a high-voltage (HV) region, a medium-voltage (MV) region, and a low-voltage (LV) region, forming a HV device on the HV region, and forming a LV device on the LV region. Preferably, the HV device includes a first base on the substrate, a first gate dielectric layer on the first base, and a first gate electrode on the first gate dielectric layer. The LV device includes a fin-shaped structure on the substrate, and a second gate electrode on the fin-shaped structure, in which a top surface of the first gate dielectric layer is lower than a top surface of the fin-shaped structure.
Abstract:
A semiconductor device includes a substrate, a first transistor, a second transistor and a third transistor. The substrate includes a high-voltage (HV) area, a medium-voltage (MV) area, and a low-voltage (LV) area. The first transistor is disposed in the HV area and includes a first gate dielectric layer and a first gate electrode. The second transistor is disposed in the LV area and includes a plurality of fin-shaped structures and a second gate electrode. The third transistor is disposed in the MV area and includes a third gate dielectric layer and a third gate electrode. The topmost surfaces of the first gate electrode, the second gate electrode and the third gate electrode are coplanar with each other.
Abstract:
The invention provides a semiconductor structure, which comprises an MTJ (magnetic tunneling junction) stacked structure arranged on a substrate, and a SOT (spin orbit torque) layer arranged on the MTJ stacked structure, wherein the SOT layer comprises a first part with a thick thickness and two second parts with a thin thickness.