Abstract:
A high electron mobility transistor (HEMT) device includes a substrate, a channel layer, a source, a drain, a buffer layer, and a plurality of amorphous regions. The channel layer is located above the substrate. The source is located on the channel layer. The drain is located on the channel layer. The buffer layer is located between the substrate and the channel layer. The plurality of amorphous regions are located in the buffer layer below the source and the drain.
Abstract:
A high electron mobility transistor (HEMT) includes a buffer layer, a carrier transit layer, a carrier supply layer, a gate, a source electrode and a drain electrode. The buffer layer is on a substrate. The carrier transit layer is on the buffer layer. The carrier supply layer is on the carrier transit layer. The gate is on the carrier supply layer. The source electrode and the drain electrode are at two opposite sides of the gate, wherein each of the source electrode and the drain electrode includes a conductive layer and a conductive oxide layer stacked from bottom to top.
Abstract:
A high electron mobility transistor (HEMT) includes a buffer layer, a carrier transit layer, a carrier supply layer, a gate, a source electrode and a drain electrode. The buffer layer is on a substrate. The carrier transit layer is on the buffer layer. The carrier supply layer is on the carrier transit layer. The gate is on the carrier supply layer. The source electrode and the drain electrode are at two opposite sides of the gate, wherein each of the source electrode and the drain electrode includes a conductive layer and a conductive oxide layer stacked from bottom to top.
Abstract:
A high electron mobility transistor (HEMT) includes a buffer layer, a carrier transit layer, a carrier supply layer, a gate, a source electrode and a drain electrode. The buffer layer is on a substrate. The carrier transit layer is on the buffer layer. The carrier supply layer is on the carrier transit layer. The gate is on the carrier supply layer. The source electrode and the drain electrode are at two opposite sides of the gate, wherein each of the source electrode and the drain electrode includes a conductive layer and a conductive oxide layer stacked from bottom to top.
Abstract:
Provided is a FinFET including a substrate, at least one fin and at least one gate. A portion of the at least one fin is embedded in the substrate. The at least one fin includes, from bottom to top, a seed layer, a stress relaxation layer and a channel layer. The at least one gate is across the at least one fin. A method of forming a FinFET is further provided.
Abstract:
The present invention provides a method for forming a semiconductor structure, at least including the following steps: first, four sacrificial patterns are formed on a substrate, and a plurality of spacers are then formed surrounding each sacrificial pattern. Next, the four sacrificial patterns are removed, and a photoresist layer is formed between each spacer, covering parts of each spacer. Afterwards, a first etching process is performed to partially remove each spacer, and the photoresist layer is then removed, and a second etching process is then performed, to remove each spacer again, and to form four nanowire hard masks.
Abstract:
A semiconductor device comprises a semiconductor substrate and a semiconductor fin. The semiconductor substrate has an upper surface and a recess extending downwards into the semiconductor substrate from the upper surface. The semiconductor fin is disposed in the recess and extends upwards beyond the upper surface, wherein the semiconductor fin is directly in contact with semiconductor substrate, so as to form at least one semiconductor hetero-interface on a sidewall of the recess.
Abstract:
A method of fabricating a semiconductor device with fin-shaped structures includes respectively forming first fin-shaped structures in a first region and a second region of a semiconductor substrate, depositing a dielectric layer to completely cover the first fin-shaped structures, removing the first fin-shaped structures in the second region so as to form trenches in the dielectric layer, and performing an in-situ doping epitaxial growth process so as to respectively form second fin-shaped structures in the trenches.
Abstract:
An HEMT includes a gallium nitride layer. An aluminum gallium nitride layer is disposed on the gallium nitride layer. A gate is disposed on the aluminum gallium nitride layer. The gate includes a P-type gallium nitride and a schottky contact layer. The P-type gallium nitride contacts the schottky contact layer, and a top surface of the P-type gallium nitride entirely overlaps a bottom surface of the schottky contact layer. A protective layer covers the aluminum gallium nitride layer and the gate. A source electrode is disposed at one side of the gate, penetrates the protective layer and contacts the aluminum gallium nitride layer. A drain electrode is disposed at another side of the gate, penetrates the protective layer and contacts the aluminum gallium nitride layer. A gate electrode is disposed directly on the gate, penetrates the protective layer and contacts the schottky contact layer.
Abstract:
According to an embodiment of the present invention, a high electron mobility transistor (HEMT) includes: a buffer layer on a substrate; a carrier transit layer on the buffer layer; a carrier supply layer on the carrier transit layer; a gate electrode on the carrier supply layer; and a source and a drain adjacent to two sides of the gate electrode. Preferably, the carrier supply layer comprises a concentration gradient of aluminum (Al).