Abstract:
An applicator for dispensing adhesive is disclosed. The applicator includes a manifold, at least one dispensing module coupled to the manifold, a supply channel configured to contain at least a portion of the adhesive, a recirculation channel configured to contain at least a portion of the adhesive, and a recirculation pump assembly connected to the manifold. The recirculation pump assembly includes an inlet in fluid communication with the recirculation channel, an outlet in fluid communication with the supply channel, a gear assembly, and a drive motor coupled to the gear assembly and operable to pump the adhesive, where the drive motor is configured to operate at an adjustable number of revolutions per minute (RPM). The recirculation pump assembly can be configured to move at least a portion of the adhesive from the recirculation channel to the supply channel, such that a first pressure of the adhesive in the recirculation channel is substantially equal to a second pressure of the adhesive in the supply channel.
Abstract:
An improved system for applying a coating to a sheet is disclosed. The system allows precise control of the actuation of the valves and movement of the nozzle to create a plurality of coating profiles. The system includes a controller, which is used to actuate the valves to begin and terminate the flow of material onto the sheet through a nozzle. In addition, the controller may move the nozzle from its operative position to an inoperative position away from the sheet. In some embodiments, a fluid displacement mechanism is used. The controller is also able to coat the opposite side of the sheet. Registration of the coating can be programmed to be in exact alignment, or advanced or delayed by a specific amount.
Abstract:
A spreading head particularly for spreading one or more adhesives or mixtures of adhesives, of the hot-melt or cold type, comprising a body for conveying the one or more adhesives to an extrusion tool; the body has two or more ducts, which are all separate or of which two or more converge, and the tool has one or more first extrusion channels and/or one or more mixing chambers which are connected to one or more second extrusion channels, the first and/or second extrusion channels being optionally mutually superimposed and/or laterally adjacent.
Abstract:
An application head (11) for application of hot-melt adhesive onto a width of material (22) has a housing (12) with a control slide chamber (20). A cylinder control slide (13) is supported and is rotatably drivable in the housing. At least one supply aperture introduces an adhesive into the control slide chamber (20). A slotted nozzle (18) releases the adhesive. The slotted nozzle is controllable by the cylinder control slide (13). The nozzle extends transversely to the direction of movement of the width of material (22). The cylinder control slide (13) has a cylindrical surface which is able to seal the slotted nozzle (18) from the inside. The control slide (13) also has surface grooves (17) in the cylindrical surface. The grooves, as a function of their rotational positions, are able to communicate with the slotted nozzle. Furthermore, the cylinder control slide (13) inside the control slide chamber, has either an inner cavity (29) supplied with medium through a supply aperture, as well as radial exit bores (28) leading from the inner cavity into the surface grooves, or it has a helical or spiral-shaped surface groove in the cylindrical surface, as well as a storage volume for medium, which communicates with the at least one surface groove.
Abstract:
An application head (11) for contract-free application of hot-melt adhesive onto a width of material (22) has a housing (12) with a control slide chamber (20). A cylinder control slide (13) is supported and is rotatably drivable in the housing. At least one supply aperture introduces an adhesive into the control slide chamber (20). A slotted nozzle (18) releases the adhesive. The slotted nozzle is controllable by the cylinder control slide (13). The nozzle extends transversely to the direction of movement of the width of material (22). The cylinder control slide (13) has a cylindrical surface which is able to seal the slotted nozzle (18) from the inside. The control slide (13) also has surface grooves (17) in the cylindrical surface. The grooves, as a function of their rotational positions, are able to communicate with the slotted nozzle. Furthermore, the cylinder control slide (13) inside the control slide chamber, has either an inner cavity (29) supplied with medium through a supply aperture, as well as radial exit bores (28) leading from the inner cavity into the surface grooves, or it has a helical or spiral-shaped surface groove in the cylindrical surface, as well as a storage volume for medium, which communicates with the at least one surface groove.
Abstract:
To provide a coating apparatus which is capable of making short a lag time up to action of a valve and making operate a discharging pump and a valve with the best timing. By employing electric-air regulators ER1 and ER2 of small size and high response speed as a speed controller for controlling a switching speed of a switching valve AV or a suck-back valve SV, total flowing course is made short, thereby a time lag up to operation of a valve is made short. Further, by detecting the pressure of a resist liquid being discharged from a discharging pump 120 by a pressure sensor 123, and by controlling the operation of each device of a discharging pump 120, a switching valve AV, and a suck-back valve SV through a controller 180, a discharging pump 120, a switching valve AV, and a suck-back valve SV can be operated with the best timings, and generation of particles due to dripping of a resist liquid at a tip end of a resist nozzle 60 is prevented from occurring.
Abstract:
To supply a liquid uniformly to a dye applicator, the liquid must be divided in a specific way before the liquid reaches a strip of the applicator. This is accomplished with a hollow plate which has a large number of tube fittings on its outer circumference for the through flow of precisely constant amounts of liquid. These fittings, for treating different working widths of the applicator, must be provided at least partially with valves to close them. In order to keep the distributing plate small in diameter and simultaneously to be able to close one through flow channel or another, special channels are provided in the plate that are easy to close and can be controlled exactly with respect to liquid flow.
Abstract:
The invention concerns a device for distributing liquid by gravity, particularly in a photographic coating process. The device comprises: a) a rigid cylindrical outer pipe; an inner casing produced from a flexible material and the external diameter of which is less than or equal to the internal diameter of the pipe, said casing being arranged so as to define, with the pipe, substantially concentric first and second zones isolated from each other, the second zone being connected to a source of fluid so as to be able, under the effect of the pressure of the fluid, to cause the relative volumes of the first and second zones to vary in order to control the flow of liquid in the first zone; and c) a source of pressurized fluid connected to the second zone.
Abstract:
A meltblowing die assembly featuring a preassembled die tip assembly permitting the rapid exchange thereof. The preassembled die tip assembly includes a die tip having a triangular nosepiece, a member mounted on the die tip assembly for conforming the die tip to the die body, and a pair of air plates mounted on the die tip and in combination with the nosepiece define converging air slots.
Abstract:
A meltblowing die assembly features (a) intermittent operation, (b) modular valve actuator to selectively shut off polymer flow, (c) an in-line electric heater, and (d) meltblowing units arranged in side-by-side relationship.