Abstract:
A window heating system for providing current to a heating element includes a first sensor, a second sensor, and a sensor selection module configured to determine a state of the first and the second sensors. The sensor selection module includes a first comparator associated with the first sensor and configured to determine whether a condition of the first sensor is satisfied. The window heating system also includes a controller configured to control current to the heating element based on the second sensor when the first comparator determines the condition of the first sensor is not satisfied.
Abstract:
A battery charging control apparatus of an electric vehicle includes an air conditioning control device that controls an operation of an air conditioning device, a control device that receives global positioning system (GPS) information of a user terminal, which approaches a vehicle, and to generate charging control information based on a distance that is determined based on the GPS information of the user terminal and location information of the vehicle, and a battery charging device that controls an amount of current to be supplied to a battery and the air conditioning control device, based on the charging control information.
Abstract:
A power control system supplies electric power to a plurality of power consumption devices which are provided to an electric vehicle. This system includes: a high voltage battery which is an electric power supply source; a plurality of device controllers which are provided to the respective power consumption devices and which control operations of the respective power consumption devices; and an overall controller which overall controls the plurality of device controllers. At least one of the device controllers performs an electric power restriction that restricts a consumed electric power in a corresponding power consumption device so as to allow the consumed electric power in the corresponding power consumption device to fall within an electric power allocated by the overall controller while simultaneously maintaining an operation of the corresponding power consumption device stably.
Abstract:
The invention relates to a fuel cell vehicle (200), in which the driver has more influence on the consumption and the dynamic of the vehicle (200). This is achieved by the fuel cell vehicle (200) comprising at least one sensor for detecting a first driver input and a control unit (60). The control unit (60) is configured to operate the fuel cell vehicle (200) in one of a plurality of operating modes depending on the first driver input, wherein a power consumption PAC of the air-conditioning system (70), an operating range of the fuel cell stack (10), and a transfer function for determining the power demand PEM from the second driver input are varied depending on the selected operating mode. It is provided that the driver has at least five different operating modes available, which differ in particular with respect to the available driving dynamic, the fuel consumption, and the adjustable comfort.
Abstract:
There is provided a motor drive comprising: a temperature sensor arranged to sense a temperature of the drive; a braking resistor; switching means arranged when activated to cause current to flow to the braking resistor; and controlling means arranged to activate the switching means when the sensed temperature falls below a predetermined threshold. There is also provided a method of controlling a temperature of a motor drive comprising a braking resistor. The method comprising comprises: monitoring a temperature of the drive; and activating switching means to cause current to flow to the braking resistor when the monitored temperature falls below a predetermined threshold.
Abstract:
A vehicle includes a power reception unit, a rectifier, a power line, and a cooling fan. The power reception unit of the vehicle is configured to receive, in a contactless manner, AC power output from a power transmission unit of a power transmission device. The rectifier rectifies the electric power received by the power reception unit. The electric power rectified by the rectifier is output through the power line. The cooling fan cools the power reception unit. The cooling fan is electrically connected to the power line, and operates with the electric power received from the power line.
Abstract:
A method of controlling and a system for charging a battery power supply unit for a bicycle electronic device, even in critical temperature conditions, is provided. Heat energy is supplied to the power supply unit when its temperature is lower than or equal to a lower temperature threshold within a closed charging temperature range characteristic of the power supply unit.
Abstract:
A warm-up apparatus for a vehicle including a system which charges a battery by using an external power supply is provided. The warm-up apparatus includes a heater for warming up, a current detector, a voltage detector and a resistance changer. The heater is mounted in the vehicle and produces heat by receiving electric power from the external power supply. The current detector detects an allowable current value of the external power supply. The voltage detector detects an output voltage value of the external power supply. The resistance changer changes an electric resistance value of the heater based on the allowable current value detected by the current detector and the output voltage value detected by the voltage detector.
Abstract:
The present invention relates to a system for maintaining battery cycle life for battery-powered electric vehicles.Current battery-powered electric vehicles such as automobiles and trucks suffer from short cycle lifes of their batteries, meaning that these vehicles' batteries will become unusable well before the normal useful life of combustion engine powered vehicles.Owners of vehicles using my system will enjoy vehicles with acceptable ranges, acquisition and operating costs, yet will enjoy battery lifes as long or as longer than the useful life of combustion engine vehicles.
Abstract:
Methods and systems are provided for thermally controlling a plurality of devices of a system using an element. The element is controlled in accordance with a first control strategy via a processor if a temperature of a first device of the plurality of devices is within a first range, a temperature of a second device of the plurality of devices is within a second range, and an inlet temperature of the system is within a third range. The element is controlled via the processor in accordance with a second control strategy via the processor if the temperature of the first device is not within the first range, the temperature of the second device is not within the second range, or the inlet temperature is not within the third range.