Abstract:
Methods and apparatus for forming MEMS devices. An apparatus includes at least a portion of a semiconductor substrate having a first thickness and patterned to form a moveable mass; a moving sense electrode forming the first plate of a first capacitance; at least one anchor patterned from the semiconductor substrate and having a portion that forms the second plate of the first capacitance and spaced by a first gap from the first plate; a layer of semiconductor material of a second thickness patterned to form a first electrode forming a first plate of a second capacitance and further patterned to form a second electrode overlying the at least one anchor and forming a second plate spaced by a second gap that is less than the first gap; wherein a total capacitance is formed that is the sum of the first capacitance and the second capacitance. Methods are disclosed.
Abstract:
A producing method for a diaphragm-type resonant MEMS device includes forming a first silicon oxide film, forming a second silicon oxide film, forming a lower electrode, forming a piezoelectric film, forming an upper electrode, laminating the first silicon oxide film, the second silicon oxide film, the lower electrode, the piezoelectric film, and the upper electrode in this order on a first surface of a silicon substrate, and etching the opposite side surface of the first surface of the silicon substrate by deep reactive ion etching to form a diaphragm structure, in which the proportion R2 of the film thickness t2 of the second silicon oxide film with respect to the sum of the film thickness t1 of the first silicon oxide film and the film thickness t2 of the second silicon oxide film satisfies the following condition: 0.10 μm≦t1≦2.00 μm; and R2≧0.70.
Abstract:
In a method of producing trench-like depressions in the surface of a wafer, particularly a silicon wafer, by plasma etching, in which the depressions are produced by alternate passivation and etching, each depression in its final geometry is provided with a protective layer of the polytetrafluoroethylene type.
Abstract:
Embodiments of the invention provide a substrate etching method, which includes: a deposition operation for depositing a polymer on a side wall of a silicon groove, an etching operation for etching the side wall of the silicon groove, and repeating the deposition operation and the etching operation at least twice. In the process of completing all cycles of the etching operation, a chamber pressure of a reaction chamber is decreased from a preset highest pressure to a preset lowest pressure according to a preset rule. The substrate etching method, according to various embodiments of the invention, avoid the problem of damaging the side wall, thereby making the side wall smooth.
Abstract:
According to an embodiment of a semiconductor device, the semiconductor device includes a micro-mechanical structure and a semiconductor material arranged over the micro-mechanical structure. A side surface of the semiconductor material includes a first region and a second region. The first region has an undulation, and the second region is a peripheral region of the side surface and decreases towards the micro-mechanical structure.
Abstract:
A dry etching method includes a first step and a second step. The first step includes generating a first plasma from a gas mixture, which includes an oxidation gas and a fluorine containing gas, and performing anisotropic etching with the first plasma on a silicon layer to form a recess in the silicon layer. The second step includes alternately repeating an organic film forming process whereby an organic film is deposited on the inner surface of the recess with a second plasma, and an etching process whereby the recess covered with the organic film is anisotropically etched with the first plasma. When an etching stopper layer is exposed from a part of the bottom surface of the recess formed in the first step, the first step is switched to the second step.
Abstract:
A method of anisotropic plasma etching of a silicon wafer, maintained at a temperature from −40° C. to −120° C., comprising alternated and repeated steps of: etching with injection of a fluorinated gas, into the plasma reactor, and passivation with injection of silicon tetrafluoride, SiF4, and of oxygen into the plasma reactor, the flow rate of the gases in the plasma reactor being on the order of from 10% to 25% of the gas flow rate during the etch step.
Abstract:
A method of forming an ink supply channel for an inkjet printhead comprises the steps of: (i) providing a wafer having a frontside and a backside; (ii) etching a plurality of frontside trenches into the frontside; (iii) filling each of the trenches with a photoresist plug; (iv) forming nozzle structures on the frontside using MEMS fabrication processes; (v) etching a backside trench from the backside, the backside trench meeting with one or more of the plugs; (vi) removing a portion of each photoresist plug via the backside trench by subjecting the backside to a biased oxygen plasma etch, thereby exposing sidewall features in the backside trench; (vii) modifying the exposed sidewall features; and (viii) removing the photoresist plugs to form the ink supply channel. The ink supply channel connects the backside to the frontside.
Abstract:
A process for facilitating modification of an etched trench is provided. The process comprises: (a) providing a wafer comprising an etched trench, the trench having a photoresist plug at its base; and (b) removing a portion of the photoresist by subjecting the wafer to a biased oxygen plasma etch. The process is particularly suitable for preparing a trench for subsequent argon ion milling. Printhead integrated circuits fabricated by a process according to the invention have improved ink channel surface profiles and/or surface properties.
Abstract:
A device includes a top layer having at least two opposing faces, and at least two epitaxially deposited layers, each of the at least two epitaxially deposited layers situated on a respective one of the at least two opposing faces, a combined thickness of the at least two epitaxially deposited layers tuning a gap between the at least two opposing faces.