Abstract:
A method for manufacturing a membrane in which an n-doped epitaxy layer is applied on a p-doped silicon substrate. Disposed between the silicon substrate and the epitaxy layer is a p-doping which leads to a reduction of the membrane thickness during a subsequent etching process.
Abstract:
A monolithic sensor including a doped mechanical structure is movably supported by but electrically isolated from a single crystal semiconductor substrate of the sensor through a relatively simple process. The sensor is preferably made from a single crystal silicon substrate using front-side release etch-diffusion. Thick single crystal Si micromechanical devices are combined with a conventional bipolar complimentary metal oxide semiconductor (BiCMOS) integrated circuit process. This merged process allows the integration of Si mechanical resonators as thick as 15 &mgr;m thick or more with any conventional integrated circuit process with the addition of only a single masking step. The process does not require the use of Si on insulator wafers or any type of wafer bonding. The Si resonators are etched in an inductively coupled plasma source which allows deep trenches to be fabricated with high aspect ratios and smooth sidewall surfaces. Clamped-clamped beam Si resonators 500 &mgr;m long, 5 &mgr;m wide, and 11 &mgr;m thick are disclosed. A typical resonator had a resonance frequency of 28.9 kHz and an amplitude of vibration at resonance of 4.6 &mgr;m in air. Working NMOS transistors are fabricated on the same chip as the resonator with measured threshold voltages of 0.6 V and an output conductance of 2.0×10−5&OHgr;−1 for a gage voltage of 4 V.
Abstract:
A method for anodizing silicon substrate includes forming an n-type silicon embedded layer (21) made of n-type silicon on a predetermined area of a first surface of the p-type single crystal silicon substrate (2). N-type silicon layers (4, 6) are formed on the upper surface of the p-type single crystal silicon substrate (2) and on the n-type silicon embedded layer (21). Silicon diffusion layers (5, 7) containing high-concentration p-type impurities are formed on predetermined areas of the n-type silicon layers (4, 6) to contact the n-type silicon embedded layer (21). An electrode layer (13) is formed on the lower surface of the p-type silicon substrate (2). The anode of a DC power source (15) is connected to the electrode layer (13), and the cathode is connected to a counter electrode (23), which is opposed to the p-type silicon substrate (2). A current is intensively applied to an area corresponding to an opening (21a) of the n-type silicon layer (4) in a direction from the lower surface to the upper surface of the p-type single crystal silicon substrate (2), which makes the area porous.
Abstract:
A monolithic sensor including a doped mechanical structure is movably supported by but electrically isolated from a single crystal semiconductor substrate of the sensor through a relatively simple process. The sensor is preferably made from a single crystal silicon substrate using front-side release etch-diffusion. Thick single crystal Si micromechanical devices are combined with a conventional bipolar complimentary metal oxide semiconductor (BiCMOS) integrated circuit process. This merged process allows the integration of Si mechanical resonators as thick as 15 .mu.m thick or more with any conventional integrated circuit process with the addition of only a single masking step. The process does not require the use of Si on insulator wafers or any type of wafer bonding. The Si resonators are etched in an inductively coupled plasma source which allows deep trenches to be fabricated with high aspect ratios and smooth sidewall surfaces. Clamped-clamped beam Si resonators 500 .mu.m long, 5 .mu.m wide, and 11 .mu.m thick are disclosed. A typical resonator had a resonance frequency of 28.9 kHz and an amplitude of vibration at resonance of 4.6 .mu.m in air. Working NMOS transistors are fabricated on the same chip as the resonator with measured threshold voltages of 0.6 V and an output conductance of 2.0.times.10.sup.-5 .OMEGA..sup.-1 for a gage voltage of 4 V.
Abstract:
In a sensor and a method for manufacturing a sensor, a movable element is patterned out of a silicon layer and is secured to a substrate. The conducting layer is subdivided into various regions, which are electrically insulated from one another. The electrical connection between the various regions of the silicon layer is established by a conducting layer, which is arranged between a first and a second insulating layer.
Abstract:
A semiconductor device with a force and/or acceleration sensor (12), which has a spring-mass system (14, 16) responsive to the respective quantity to be measured and whose mass (16) bears via at least one resilient support element (14) on a semiconductor substrate (20). The semiconductor substrate (20) and the spring-mass system (14, 16) are integral components of a monocrystalline semiconductor crystal (10) with a IC-compatible structure. The three-dimensional structural form of the spring-mass system (12) is produced by anisotropic semiconductor etching, defined P/N junctions of the semiconductor layer arrangement functioning as etch stop means in order to more particularly create a gap (22) permitting respective movement of the mass (16) between the mass (16) and the semiconductor substrate (20).
Abstract:
A method of manufacturing a semiconductor device by which an element region for electronic circuits or the like is formed on the surface of a semiconductor substrate, a diaphragm region is formed in the bottom surface of the semiconductor substrate, and a plurality of openings having different areas and shapes are formed in the semiconductor substrate. The method includes a step of forming a first diaphragm region in the bottom surface of a semiconductor substrate, a step of partially forming a second diaphragm region in the first diaphragm region, the second diaphragm region being thinner than the first diaphragm region, and a step of forming an opening by removing part or the whole of the second diaphragm region.
Abstract:
In a sensor and a method for manufacturing a sensor, a movable element is patterned out of a silicon layer and is secured to a substrate. The conducting layer is subdivided into various regions, which are electrically insulated from one another. The electrical connection between the various regions of the silicon layer is established by a conducting layer, which is arranged between a first and a second insulating layer.
Abstract:
A process for manufacturing an interaction system of a microelectromechanical type for a storage medium, the interaction system provided with a supporting element and an interaction element carried by the supporting element, envisages the steps of: providing a wafer of semiconductor material having a substrate with a first type of conductivity and a top surface; forming a first interaction region having a second type of conductivity, opposite to the first type of conductivity, in a surface portion of the substrate in the proximity of the top surface; and carrying out an electrochemical etch of the substrate starting from the top surface, the etching being selective with respect to the second type of conductivity, so as to remove the surface portion of the substrate and separate the first interaction region from the substrate, thus forming the supporting element.
Abstract:
A method for manufacturing a micromechanical diaphragm structure having access from the rear of the substrate includes: n-doping at least one contiguous lattice-type area of a p-doped silicon substrate surface; porously etching a substrate area beneath the n-doped lattice structure; producing a cavity in this substrate area beneath the n-doped lattice structure; growing a first monocrystalline silicon epitaxial layer on the n-doped lattice structure; at least one opening in the n-doped lattice structure being dimensioned in such a way that it is not closed by the growing first epitaxial layer but instead forms an access opening to the cavity; an oxide layer being created on the cavity wall; a rear access to the cavity being created, the oxide layer on the cavity wall acting as an etch stop layer; and the oxide layer being removed in the area of the cavity.