Abstract:
The present invention provides an ion absorption/desorption device and a corresponding method. The ion absorption device may comprise: an electrode pair (12, 14), at least one electrode of the electrode pair (12, 14) being covered by ions-permeable gel (16a) with functional groups, the gel (16a) absorbing ions in a liquid (26a) when a voltage is applied on the electrode pair (12, 14). Covering the electrode with ions-permeable gel with functional groups may facilitate chelation of the cations and/or anions in the liquid with the functional groups in the gel, thereby, immobilizing these ions in the gel so as to improve absorption efficiency.
Abstract:
Disclosed is an electrode an electrode for capacitive deionization comprising • (i) an adsorbent having specific surface area of 100 m 2/g to 1300 m 2/g; • (ii) conductive carbon black; and • (iii) a binder; wherein said adsorbent is impregnated with a substance having conductivity in the range of 105 S/m to 107 S/m and standard hydrogen potential in the range of −0.3 V to −1.3 V. The electrode provides enhanced recovery and greater reduction in total solids and is more energy efficient. The process or preparing the electrode and a gravity fed water purification apparatus incorporating said electrode are also disclosed.
Abstract:
An energy storage system employing a reversible salination-desalination process includes an electrochemical desalination battery (EDB) unit including an anode and a cathode. The EDB unit runs a salination process while storing energy from a direct current power supply unit, and runs a desalination process while releasing energy to an electrical load. The energy storage system can store power from a variable output electrical power supply unit such as solar cells and wind turbines while running a salination process, and release energy, e.g., during peak energy demand hours while running a desalination process. Combined with a capacitive deionization (CD) unit, the energy storage system can generate fresh water by running desalination processes in the EDB unit and the CD unit while releasing stored energy from the EDB unit. The energy storage unit can function as a dual purpose device for energy storage and fresh water generation.
Abstract:
An electrochemical treating device having low scale potential is disclosed. The device has a variety of configurations directed to the layering of the anionic exchange and cationic exchange. The treatment device can also comprise unevenly sized ion exchange resin beads and/or have at least one compartment that provides a dominating resistance that results in a uniform current distribution throughout the apparatus.
Abstract:
It is an object of the present invention to provide an electrical deionization apparatus having a novel constitution with excellent deionization efficiency. As means for solving this problem, according to one embodiment of the present invention, there is provided an electrical deionization apparatus having deionization compartments, concentration compartments and electrode compartments partitioned from one another by a plurality of ion exchange membranes between a cathode and an anode, wherein, in the deionization compartments and/or the concentration compartments and/or the electrode compartments, at least one of anion exchange fibrous material layers and cation exchange fibrous material layers are disposed on one another intersecting a water-passing direction.
Abstract:
A curable composition comprising: (i) 2.5 to 50 wt % crosslinker comprising at least two acrylamide groups; (ii) 20 to 65 wt % curable ionic compound comprising an ethylenically unsaturated group and an anionic group; (iii) 15 to 45 wt % solvent; and (iv) 0 to 10 wt % of free radical initiator; wherein the molar ratio of (i):(ii) is 0.1 to 1.5. The compositions are useful for preparing ion exchange membranes.
Abstract:
It is an object of the present invention to provide an electrical deionization apparatus having a novel constitution with excellent deionization efficiency. As means for solving this problem, according to one embodiment of the present invention, there is provided an electrical deionization apparatus having deionization compartments, concentration compartments and electrode compartments partitioned from one another by a plurality of ion exchange membranes between a cathode and an anode, wherein, in the deionization compartments and/or the concentration compartments and/or the electrode compartments, at least one of anion exchange fibrous material layers and cation exchange fibrous material layers are disposed on one another intersecting a water-passing direction.
Abstract:
The present disclosure is directed at an apparatus, method and plant for desalinating saltwater and contaminated saltwater. The apparatus includes a stack and a manifolding assembly. The stack includes a product chamber, a first and second concentrate chamber, an anion exchange membrane forming a boundary between the first concentrate chamber and the product chamber and a cation exchange membrane forming a boundary between the second concentrate chamber and the product chamber. The manifolding assembly includes product and concentrate manifolding fluidly coupled to the product and concentrate chambers respectively, to convey a saltwater being desalinated to and away from the product chamber, and a concentrate to and away from the concentrate chambers. The stack may include a diluent chamber and adjacent anion or cation exchange membranes between the product chamber, diluent chamber and concentrate chamber to respectively convey anions or cations across multiple chambers.
Abstract:
A curable composition comprising: (i) 2.5 to 50 wt % crosslinker comprising at least two acrylamide groups; (ii) 12 to 65 wt % curable ionic compound comprising an ethylenically unsaturated group and a cationic group; (iii) 15 to 70 wt % solvent; and (iv) 0 to 10 wt % of free radical initiator; and (v) 2 to 50 wt % of non-curable salt; wherein the composition has a pH of 1 to 12. The compositions are useful for preparing ion exchange membranes.
Abstract:
An electrical purification apparatus and methods of making same are disclosed. The electrical purification apparatus may provide for increases in operation efficiencies, for example, with respect to current efficiencies and membrane utilization.