Abstract:
A hot-melt pressure-sensitive adhesive composition comprises:
a) at least one polyurethane comprising at least two end functional groups T of following formula (I):
—X—(C═O)—CH(RV)═CH2 (I)
b) at least one tackifying resin chosen from the following resins:
(b1) terpene/phenolic resins; (b2) the resins resulting from the polymerization of α-methylstyrene, optionally followed by a reaction with at least one phenol; (b3) the polymeric resins (optionally at least partially hydrogenated) resulting from mainly C9 aromatic fractions; and
c) at least one polymerization inhibitor.
The polyurethane(s) (a): tackifying resin(s) (b) ratio by weight ranges from 4:6 to 6:4. The said polyurethane (a) has a mean functionality of functional groups of formula (I) strictly of greater than 1.9.
Abstract:
There is provided a decorative sheet having excellent design properties, i.e., low gloss, and having fingerprint resistance, high durability (particularly scratch resistance or contamination resistance), and processability. A decorative sheet (1) according to this embodiment includes: a base material layer (2); and a surface protective layer (5) provided on one surface of the base material layer (2), in which the surface protective layer (5) has ridge-like parts provided to project in a ridge-like shape and form an irregular shape on the surface, RSm/Ra of the irregular shape of the surface protective layer (5) is within the range of 10 or more and 300 or less, the surface protective layer (5) contains an ionizing radiation curable resin as a main material, the ionizing radiation curable resin contains, as a main component, a tetrafunctional acrylic resin containing a repeating structure, the repeating structure is any one of the structures of ethylene oxide, propylene oxide, and ε-caprolactone, and the number of repetitions of the repeating structure is 12 or more.
Abstract:
The invention relates to a lubricant coating for a medical container comprising a cross-linked lubricant composition comprising a mixture of non-reactive silicone with reactive silicone, characterized in that the reactive silicone comprises a mixture of vinyl-based silicone and acrylate-based silicone. The invention further relates to a lubricant composition usable as an intermediate product in the fabrication of a lubricant coating. The invention further relates to a medical container comprising a barrel and a stopper in gliding engagement within the barrel, comprising such a lubricant coating. The invention also relates to a process of manufacturing a medical container comprising a barrel and a stopper in gliding engagement within the barrel including depositing a lubricant composition on the inner surface of the barrel and/or on the stopper, and irradiating the coated barrel and/or stopper so as to cross-link the lubricant composition to form a lubricant coating.
Abstract:
Diurethane (meth)acrylate-silane precursor compounds prepared by reacting a primary or secondary aminosilane with a cyclic carbonate to yield a hydroxylalkylene-carbamoylalkylene-alkoxysilanes (referred to as a “hydroxylcarbamoylsilane”), which is reacted with a (meth)acrylated material having isocyanate functionality, either neat or in solvent, and optionally with a catalyst, such as a tin compound. Also described are articles including a substrate, a base (co)polymer layer on a major surface of the substrate, an oxide layer on the base (co)polymer layer; and a protective (co)polymer layer on the oxide layer, the protective (co)polymer layer including the reaction product of at least one diurethane (meth)acrylate-silane precursor compound. The substrate may be a (co)polymer film or an electronic device such as an organic light emitting device, electrophoretic light emitting device, liquid crystal display, thin film transistor, or combination thereof. Methods of making the diurethane (meth)acrylate-silane and their use in composite films and electronic devices are described.
Abstract:
Adhesive articles that include a substrate, a silicone polyoxamide-containing primer layer, and a silicone adhesive are disclosed. Methods of making the adhesive articles and the use of a silicone polyoxamide as a primer for improving adhesion between a substrate and a silicone adhesive are also disclosed.
Abstract:
The present disclosure features processes and equipment for manufacturing materials that have a textured surface formed by applying a first texture to a curable coating, curing the coating, and then embossing a second, different texture over the first texture. The disclosure also features textured materials, including both release webs for use in replicative casting processes and finished products in sheet, board, plate or web form.
Abstract:
Urethane (multi)-(meth)acrylate (multi)-silane compositions, and articles including a (co)polymer reaction product of at least one urethane (multi)-(meth)acrylate (multi)-silane precursor compound. The disclosure also articles including a substrate, a base (co)polymer layer on a major surface of the substrate, an oxide layer on the base (co)polymer layer; and a protective (co)polymer layer on the oxide layer, the protective (co)polymer layer including the reaction product of at least one urethane (multi) (meth)acrylate (multi)-silane precursor compound. The substrate may be a (co)polymeric film or an electronic device such as an organic light emitting device, electrophoretic light emitting device, liquid crystal display, thin film transistor, or combination thereof. Methods of making urethane (multi)-(meth)acrylate (multi)-silane precursor compounds and their use in composite multilayer barrier films are also described. Methods of using such barrier films in articles selected from a solid state lighting device, a display device, and combinations thereof, are also described.
Abstract:
A silver-containing tissue dressing for providing antimicrobial properties to a wound site is disclosed. In some embodiments, the tissue dressing may include a wound contact layer having a substrate material coated with a tacky hydrophobic silicone material, and silver-containing particles dispersed in the silicone material. The different surfaces of the substrate material may be coated with the silicone material having various amounts of tackiness. The silver material may provide antimicrobial properties when the tissue dressing is placed in contact with the wound site.
Abstract:
A method of manufacturing a scratch resistant, touch sensor comprising: (1) applying a non-polymer protective coating solution to a touch sensor; and (2) forming a cross-linked polymer structure by curing the protective coating solution.
Abstract:
A method (400) of additively manufacturing a composite part (102) is disclosed. The method (400) comprises depositing, via a delivery guide (112), a segment (120) of a continuous flexible line (106) along a print path (122). The continuous flexible line (106) comprises a non-resin component (108) and a thermosetting-epoxy-resin component (110) that is partially cured. The method (400) also comprises maintaining the thermosetting-epoxy-resin component (110) of at least the continuous flexible line (106) being advanced toward the print path (122) via the delivery guide (112) below a threshold temperature. The method (400) further comprises delivering a predetermined or actively determined amount of curing energy (118) to the segment (120) of the continuous flexible line (106) at a controlled rate while advancing the continuous flexible line (106) toward the print path (122) to at least partially cure the segment (120) of the continuous flexible line (106).