Abstract:
A medicated electrochemical oxidation process is used for sterilization/disinfection of contaminated instruments and infectious waste. Contaminated instruments and waste are introduced into an apparatus for contacting the infectious waste with an electrolyte containing the oxidized form of one or more reversible redox couples, at least one of which is produced at the anode of an electrochemical cell. The oxidized species of the redox couples oxidize the infectious waste molecules and are themselves converted to their reduced form, whereupon they are reoxidized by either of the aforementioned mechanisms and the redox cycle continues until all oxidizable infectious waste species have undergone the desired degree of oxidation. The entire process takes place at temperatures between ambient and approximately 100 degree celsius. The oxidation process will be enhanced by the addition of reaction of reaction enhancements, such as: ultrasonic energy and/or ultraviolet radiation.
Abstract:
A mediated electrochemical oxidation process is used to treat, oxidize and destroy food waste materials, such as manure, biological residue, hay, straw, animal byproducts, bones, horns, blood, biological items, pathological waste and combined waste. Food waste is introduced into an apparatus for contacting the waste with an electrolyte containing the oxidized form of one or more reversible redox couples, at least one of which is produced by anodic oxidation in an electrochemical cell. The oxidized species of the redox couples oxidize the organic waste molecules and are themselves converted to their reduced form, whereupon they are reoxidized by either of the aforementioned mechanisms and the redox cycle continues until all oxidizable waste species, including intermediate reaction products, have undergone the desired degree of oxidation. The process takes place at temperatures between zero degrees centigrade and below the boiling point of the electrolyte.
Abstract:
A mediated electrochemical oxidation process is used to treat, oxidize and destroy halogenated hydrocarbon waste materials. The waste materials are introduced into an apparatus for contacting with an electrolyte containing the oxidized form of one or more reversible redox couples, at least one of which is produced electrochemically by anodic oxidation at the anode of an electrochemical cell. The oxidized forms of any other redox couples present are produced either by similar anodic oxidation or reaction with the oxidized form of other redox couples present and capable of affecting the required redox reaction. The oxidized species of the redox couples oxidize the halogenated hydrocarbon waste molecules and are themselves converted to their reduced form, whereupon they are reoxidized by either of the aforementioned mechanisms and the redox cycle continues until all oxidizable waste species, including intermediate reaction products, have undergone the desired degree of oxidation.
Abstract:
An oxygen emitter which is an electrolytic cell is disclosed. When the anode and cathode are separated by a critical distance, very small microbubbles and nanobubbles of oxygen are generated. The very small oxygen bubbles remain in suspension, forming a solution supersaturated in oxygen. A flow-through model for oxygenating flowing water is disclosed. The use of supersaturated water for enhancing the growth of plants is disclosed. Methods for applying supersaturated water to plants manually, by drip irrigation or in hydroponic culture are described. The treatment of waste water by raising the dissolved oxygen with the use of an oxygen emitter is disclosed.
Abstract:
An oxygen emitter which is an electrolytic cell is disclosed. When the anode and cathode are separated by a critical distance, very small microbubbles and nanobubbles of oxygen are generated. The very small oxygen bubbles remain in suspension, forming a solution supersaturated in oxygen. A flow-through model for oxygenating flowing water is disclosed. The use of supersaturated water for enhancing the growth of plants is disclosed. Methods for applying supersaturated water to plants manually, by drip irrigation or in hydroponic culture are described. The treatment of waste water by raising the dissolved oxygen with the use of an oxygen emitter is disclosed.
Abstract:
An electrolysis-type apparatus for treating ballast water using NaOCl and a method thereof is provided. The apparatus includes: a ballast tank; an electrolyzer; a first circulation pump; a second circulation pump; and a controller. The ballast tank is installed in a ship to store seawater. The electrolyzer is connected with the ballast tank and electrolyzes the seawater. The circulation pumps are installed to allow the ballast water to flow into the electrolyzer and to discharge the electrolyzed water containing NaOCl to the ballast tank. The controller supplies power to the electrolyzer so as to control an NaOCl density and controls the circulation pumps. The apparatus and the method safely treat the seawater. Thus, environment pollution and ecosystem destruction can be minimized.
Abstract:
A method and system flows water through a water system in proximity to an ion generation device and to a source of ultraviolet (UV) radiation that combines photochemistry principles, heavy metal toxicity, and UV light radiation to form a highly effective combined water disinfection process. Using ion generation and UV irradiation, the method and system synergistically improves the disinfection and bactericidal effects of ion generation or UV radiation working individually by making ion-exposed microorganisms more susceptible and less resistant to the bactericidal effects of UV radiation. The combined method and system of the present invention may include control means such that the method and system can be configured for single pass through, dual pass through or for recirculation such that the order of exposure to the ion generation and UV radiation aspects can be varied or altered. The method and system of the present invention may also be provided with means for controlling the system flow rate, ion generation and UV radiation levels to maximize performance, to minimize energy consumption, and, in some situations, to selectively target certain microorganisms for inactivation.
Abstract:
The object of the present invention is to provide a water treatment device in which temperature does not affect performance in nitrogen removal. Water circulates in a first anaerobic filter bed chamber 5, a second anaerobic filter bed chamber 10, a contact aeration chamber 14, a sedimentation chamber 19, and an electrolytic chamber 59 for phosphorus removal. The supernatant in sedimentation chamber 19 flows into a disinfection chamber 21 and is then sent to an electrolytic chamber 100 for nitrogen removal. An electrode pair is provided inside electrolytic chamber 100. Halogen ions present in the water are oxidized on the anode side. After halogen gas is generated, this gas reacts with water and generates hypohalous acid. On the cathode side, the nitrogen components in the water are converted to nitrate ions, and these nitrate ions are further converted to ammonium ions. The hypohalous acid and ammonium ions react, and the nitrogen components are converted to nitrogen gas by way of chloramine.
Abstract:
A method for removal of solid deposits from surfaces of electrodes of a DC electrolytic cell for disinfecting of water in a closed system, especially in a swimming pool, SPA or hot tub, includes simultaneous spinning the water over the electrode surfaces and electrolytic release of the deposits from the surfaces without interruption of the disinfecting process. The method further includes a) changing the polarity of the electrodes of the cell at predetermined frequency for electrochemically releasing the deposited scale from the electrode surfaces; b) circulating the water through a hydrocyclone containing a DC electrolytic cell for disinfecting of the water so that the deposits are washed off the electrodes of the cell; c) periodically removing the scale particles from a drained chamber located at the bottom of the hydrocyclone.
Abstract:
Sanitary foot warm bath equipment is provided which prevents or suppresses proliferation of saprophytic bacteria in a foot bath. The foot warm bath equipment is foot warm bath equipment which reserves hot water for foot bathing in a foot bath, the equipment comprising heating means for heating water in the foot bath to produce hot water of setting temperature, electrolytic water producing means for producing electrolytic water containing hypochlorous acid by electrolyzing the water, and control means for controlling the heating means and the electrolytic water producing means, wherein the electrolytic water produced by the electrolytic water producing means is supplied into the foot bath.