Abstract:
A porous material includes a polyhexahydrotriazine material. Pores in the porous material can be of various sizes including nanoscale sizes. The porous material may be used in a variety of applications, such as those requiring materials with a high strength-to-weight ratio. The porous material can include a filler material dispersed therein. The filler material can be, for example, a particle, a fiber, a fabric, or the like. In some examples, the filler material can be a carbon fiber or a carbon nanotube. A method of making a porous material includes forming a resin including a polyhemiaminal or polyhexahydrotriazine component and a polythioaminal component. The resin can be heated to promote segregation of the components into different phases with predominately one or the other component in each phase. Processing of the resin after phase segregation to decompose the polythioaminal component can form pores in the resin.
Abstract:
The composition, advantageously an emulsion or a foam, includes an internal phase dispersed in a hydrophilic continuous phase, the percentage of the internal phase being higher than 50%. The emulsion composition contains nanocrystals of a polysaccharide other than cellulose, advantageously chitin, that are located at the interface between the internal phase and the hydrophilic continuous phase.
Abstract:
A method of preparing a porous polymer structure comprising the steps of: forming a liquid composition comprising at least one polymer dissolved in at least one solvent; subjecting the liquid composition to stress, and if necessary also to a reduction in temperature, to cause the liquid composition to form a bi-continuous phase separated composition, the bi-continuous phase separated composition comprising a polymer rich phase and a polymer poor phase; solidifying the at least one polymer in the polymer rich phase; and removing the polymer poor phase from the polymer rich phase to provide the porous polymer structure having a bi-continuous morphology from the polymer rich phase.
Abstract:
To provide a method for easily producing an ethylene/tetrafluoroethylene copolymer porous material having excellent chemical resistance and filtration performance and has a high heat resistance, within a wide range of the porosity, and an ethylene/tetrafluoroethylene copolymer porous material obtained by such a process.A process for producing an ethylene/tetrafluoroethylene copolymer porous material which comprises a step of dissolving an ethylene/tetrafluoroethylene copolymer having repeating units based on ethylene and repeating units based on tetrafluoroethylene at a temperature of at most 300° C. in a solvent which can dissolve the ethylene/tetrafluoroethylene copolymer at a temperature of at most 300° C., to achieve a predetermined concentration to obtain a solution, a step of forming the solution to obtain a formed product, and a step of cooling the formed product to a temperature of at most the phase separation temperature of the solution to solidify the ethylene/tetrafluoroethylene copolymer.
Abstract:
Porous material of a polysaccharide and a method for preparations of such a material, wherein a water-based solution of the polysaccharide is mixed, with controlled stirring, with an essentially water-immiscible organic phase to form an emulsion, which when allowed to solidify, just before or during the gelling process, forms a network of two continuous phases, an aqueous polysaccharide phase and a flow-pore-forming organic phase, resulting in a material with two types of pores: small diameter diffusion pores and large diameter flow through pores.
Abstract:
Porous polymeric structures are provided along with a method to make such structures comprising heat-induced phase separation of a polymeric solution exhibiting a lower critical solution temperature.
Abstract:
Extrusion of hollow membranes is improved by coextruding a coating fluid layer about the extrudate of heated polymer solution with its interior lumen forming extrudate. The coating fluid is disposed between the forming hollow fiber and a cooling fluid, and controls the rate of heat transfer to afford superior control over the structure and form of the hollow fiber produced in the invention. The coating fluid is typically the same material as the cooling fluid, and often is the same material as the solvent for the polymer in the heated polymer solution.
Abstract:
A process for making a polymeric, porous hollow fibre (21) by heating a mixture of a thermoplastic polymer and a solvent to a temperature and for a time for the polymer and solvent to mutually dissolve, then introducing the molten mixture into an extrusion head (FIG. 1) adapted to shape the hollow fibre. The shaped fibre is then cooled in the extrusion head to a temperature so that non-equilibrium liquid-liquid phase separation takes place to form a bi-continuous matrix of the polymer and solvent in which the polymer and solvent form two intermingled separate phases of large interfacial surface area. Finally, the solvent is removed from the polymer.The extrusion head for forming the abovementioned polymeric, porous hollow fibre has an elongated body (17, 18) defining an axial passageway (11) for receiving a lumen-forming fluid (14) and a first annular passage (12) therearound for receiving the molten mixture (15) from which the hollow fibre (21) is formed. A second annular passageway (13) is radially outward of the first annular passageway (12) and receives a coating fluid (16). A third annular passageway (19) receives a cooling fluid and has means (20) for directing the cooling fluid towards the outer surface of the coating fluid (16). The porous polymeric material of the fibre produced by the abovementioned process has a lacey or filamentous structure consisting of a plurality of polymer strands connected together at spaced apart locations along each strand.
Abstract:
A method of making a porous polymeric material by heating a mixture of a thermoplastic polymer and a cationic or non-ionic surfactant having a hydrophilic-lipophilic balance range of 4.0 to 6.0 to a temperature and for a time sufficient for the polymer and surfactant to mutually dissolve. The mixture is then cooled to a temperature so that non-equilibrium liquid-liquid phase separation takes place to form a bi-continuous matrix of the polymer and surfactant so that the polymer and surfactant form two intermingled separate phases of large interfacial surface area. The surfactant is then removed from the polymer. The porous polymeric material produced by the above method has a lacey or filamentous structure consisting of a plurality of polymer strands connected together at spaced apart locations along each strand.
Abstract:
Method of producing a single-phase composite structure of filamentary and non-filamentary semicrystalline morphology made from the same polymer, which is of a type capable of gelling in a suitable solvent and of being deformed into a high-modulus, high-strength product. Layers of the polymer in sheet form are interleaved with at least one layer, also of that polymer, made from filaments thereof. The method of making the product may involve heating a sheet of UHMWPE or other polymer gel (5% UHMWPE in 95% paraffin oil, by weight) to 125.degree. C., applying a knitted UHMWPE high modulus, high-strength structure on one side thereof, extracting the non-volatile paraffin oil therefrom with hexane, and evaporating the hexane.