Abstract:
The present invention provides a formed article, or more specifically a transparent substrate, which effectively utilizes a natural stuff and which has a low linear expansion coefficient, a high light transmittance and an appropriate level of moisture permeability. The transparent substrate includes at least an oxidized polysaccharide and has a linear expansion coefficient of 50 ppm/° C. or less at 30-150° C. and a light transmittance of 70% or more at 660 nm. Its manufacturing method includes an oxidation process in which cellulose reacts with TEMPO or its derivatives as a catalyst to be oxidized in water under the presence of a co-oxidant, along with a fiberizing process in which the oxidized cellulose is fiberized in water to form a cellulose fiber, and a substrate-forming process in which a transparent substrate is formed from a cellulose dispersion liquid containing the cellulose fiber.
Abstract:
A catalytically degradable plastic is described, with content of cellulose esters and also optionally of additives. A particular characterizing feature of this catalytically degradable plastic is that it contains a dispersed, catalytically active transition-metal-modified titanium dioxide.
Abstract:
A multilayer interlayer structure having a first and second polyvinyl acetal (poly(vinyl acetal)) layer and a cellulose ester layer having a thickness of at least 10 mils disposed between the first and second poly(vinyl acetal) layers. The cellulose ester layer can have a higher storage modulus and/or higher Tg than at least one of the poly(vinyl acetal) layers. The interlayer structure is useful to make glass panels having high stiffness and which possess good optical clarity for a variety of applications, including outdoor structural applications.
Abstract:
The inventions are an optical film containing cellulose acylate and a compound having a structure denoted by General Formula (A) described below, and a polarizing plate and a liquid crystal display device employing the optical film. L represents n-valent connecting group, n represents an integer of greater than or equal to 2, and A represents a heterocyclic group denoted by General Formula (I). R1, R3, and R5 represent a hydrogen atom, an alkyl group, a cycloalkyl group, an alkenyl group, an aryl group, or a heteroaryl group. Here, any one of R1, R3, and R5 is bonded to L.
Abstract:
There is provided a resin composition which contains a cellulose ester resin, a polyether ester compound, and an additive if necessary, the resin composition being capable of providing a resin shaped product with excellent transparency, tensile fracture energy property, and the like, and of being suppressed from deterioration of flowability.
Abstract:
Provided is a polarizer durable against high-temperature and high-humidity conditions, small in changes in the single plate transmittance, and a liquid crystal display device. A polarizer including a polyvinyl alcohol-based resin, a dichroic colorant, and a compound, etc. represented by the formula (1) below, the content of the compound represented by the formula (1) being 0.01 to 30 parts by mass relative to 100 parts by mass of the polyvinyl alcohol-based resin. In the formula (1) , each of R1 and R3 independently represents a hydrogen atom, C1-20 straight-chain alkyl group, C3-20 branched alkyl group, C3-20 cycloalkyl group, C2-20 alkenyl group or C6-20 aromatic group, and R5 represents a substituent.
Abstract:
This invention provides cellulose ester interpolymers, and methods of oxidizing cellulose interpolymers and cellulose ester interpolymers. The invention also provides routes to access carboxylated cellulose ester derivatives with high acid numbers wherein the carboxyl group is attached directly to the cellulose backbone by a carbon-carbon bond. Through functionalization of an intermediate aldehyde, the corresponding cationic or zwitterionic cellulose ester derivatives can also be accessed. The interpolymers of the present invention have a number of end-use applications, for example, as binder resins in various types of coating compositions and as drug delivery agents.
Abstract:
Engineered wood may be produced with substituted cellulose ester adhesives. For example, an engineered wood may comprise a plurality of wood substrates that independently comprise a lignin-containing material (e.g., wood dust, wood particles, wood chips, and the like), the plurality of wood substrates being adhered together with an adhesive that comprises a substituted cellulose ester that comprises a cellulose polymer backbone having an organic ester substituent and an inorganic ester substituent that comprises an inorganic, nonmetal atom selected from the group consisting of sulfur, phosphorus, boron, and chlorine.
Abstract:
The present disclosure discloses a bone stabilization device (also referred to as a bone tape), which includes a composite flexible construct including a rigidifiable biocompatible sheet structure having first and second opposed surfaces. A biocompatible cement is located on the first surface. In use the composite flexible construct is applied to a bone with the cement contacted directly to the bone. The cement is made of a material that, once adhered to the bone, is curable to mechanically and/or ionically bond to the sheet structure and to chemically bond to the bone to achieve a permanent bond. The bone tape allows simultaneous alignment and stabilization of multiple articulated fragments for successful 3D reconstruction of shattered bones. Initial flexibility and translucency provided by the bone tape can facilitate the temporary stabilization and alignment adjustment of multiple fragments, prior to permanent rigid bonding.
Abstract:
This invention provides cellulose ester interpolymers, and methods of oxidizing cellulose interpolymers and cellulose ester interpolymers. The invention also provides routes to access carboxylated cellulose ester derivatives with high acid numbers wherein the carboxyl group is attached directly to the cellulose backbone by a carbon-carbon bond. Through functionalization of an intermediate aldehyde, the corresponding cationic or zwitterionic cellulose ester derivatives can also be accessed. The interpolymers of the present invention have a number of end-use applications, for example, as binder resins in various types of coating compositions and as drug delivery agents.