Abstract:
A wire rope, particularly a non-twistable wire rope, wherein an annulus of outer strands surrounds a wire rope center with a central strand and one or more annuli of neighboring strands surrounding the central strand. The wires of the strands in the center do not intersect each other. The entire center or at least some of its strands are densified prior to or during application of the outer strands. Alternatively, or in addition to such densification, at least some strands of the center are assembled of wires having an other than circular outline to thereby reduce the combined cross-sectional area of voids in the center.
Abstract:
Hybrid rope (20) comprising a core element (22) containing high modulus fibers surrounded by at least one outer layer (24) containing wirelike metallic members (26). The core element (22) is coated (23) with a thermoplastic polyurethane or a copolyester elastomer, preferably the copolyester elastomer containing soft blocks in the range of 10 to 70 wt %. The coated material (23) on the inner core element (22) is inhibited to be pressed out in-between the wirelike members (26) of the hybrid rope (20) and the hybrid rope (20) has decreased elongation and diameter reduction after being in use.
Abstract:
A rope (210, 310) having a three-layered structure comprising a core layer, an inner layer and an outer layer, the core layer comprising one strand (225, 315), the inner layer comprising multiple strands (220) with an amount n and the outer layer comprising multiple strands (215) with an amount m, wherein n is an uneven number, and m is a number which has no common divisor with n, each strand is formed by multiple twisted metal filaments. By this structure fretting of the strands is reduced and the life time of the rope is improved. Also, the use of the rope in lifting application and an elevator system comprising such a rope are disclosed.
Abstract:
An annular metal cord includes an annular core portion and an outer layer portion. The annular core portion is formed by connecting together both ends of a first strand material which is made up of six twisted first metal filaments. The outer layer portion is formed by winding spirally a second strand material which is made up of six twisted second metal filaments around the annular core portion. The second strand material is wound at a predetermined winding angle relative to a center axis of the annular core portion, and a winding initiating end portion and a winding terminating end portion are connected together. As a result, the breaking strength of the annular metal cord can be made large, and the production thereof can be facilitated.
Abstract:
A rope has a rope core formed of load-bearing aramide fiber strands laid parallel to each other in concentric layers of strands and strands of an outermost layer laid with opposite lay to the rope core. As a result of the opposite lay, the torques which occur in the layers of strands when under load cancel each other out and a non-twisting rope structure is achieved. An elastic intersheath is positioned between the oppositely laid layers of strands to protect the strands against abrasion and to transmit the torque over a wide area in the rope.
Abstract:
The wire rope of this invention has at most 18 outer strands and an independent wire rope core, with the strands of the core being laid in the opposite direction to the outer strands of the rope, and a nylon jacket is provided between the core and the outer strands of the wire rope.
Abstract:
An elastomer rope is disclosed which is useful among other things for clamping goods to the platform of a load carrying vehicle and for mooring boats, floating landing stages, buoys, navigation marks and the like. A mooring device is also shown for anchoring floating landing stages, buoys, navigation marks and the like. The elastomer rope has the property of becoming progressively ever stiffer at increasing elongation and consists of a core of an elastomeric material, a reinforcement wound helically about the core and consisting of a material considerably less elongatable than the elastomeric material of the core, and an outer covering layer of elastomeric material. The progressivity is attained in that the reinforcement is helically wound about the core at a reinforcement angle of 50.degree.-65.degree. between the longitudinal axis of the core and the reinforcement projected at right angles thereto. The mooring device has a floating body connected to a bottom fastening with the aid of an elastic element which is under tensile prestress. The floating body is rigidly connected to a rigid tubular arm which extends downwards from the floating body. The elastic element extends from below into the tubular arm and is fixed to the upper end thereof. The elastic element is such as to become progressively ever more rigid at increasing elongation and consists of an elastomer rope of the above design.