Abstract:
A wire rope formed from a resin core and six strands, the resin core having an inner core with a circular cross section and an outer layer built up on the periphery thereof. The outer layer has a melting temperature lower than that of the inner core. The six strands are twisted together helically on the periphery of the resin core in an intertwining die in such a state that gaps are assured between the strands. The resulting wire rope is heated in a heating unit at a temperature higher than the melting temperature of the outer layer but lower than the melting temperature of the inner core. The wire rope is formed by subsequently compressing the six strands from the periphery thereof in a compressing die. The molten outer layer is hardened by natural cooling, after which the wire rope is taken up.
Abstract:
A wire rope comprising an outer rope layer and an inner rope layer of wire strands is provided. The inner rope layer itself is comprised of multiple layers, usually in a parallel laid, coreless arrangement. The inner and outer rope layers are contrahelically laid and are usually lubricated. A thermoplastic or elastomer can be utilized to encapsulate the lubricant within the inner rope layer or within both the inner and outer rope layers.
Abstract:
A hybrid rope (40) or a hybrid strand (50) comprising a core element (42, 52), a first (44, 54) and a second (46, 56) metallic closed layer surrounding said core element (42, 52). The core element (42, 52) includes a bundle of synthetic yarns. The first metallic closed layer (44, 54) includes a plurality of first strands of wires helically twisted together with the core element (42, 52) in a first direction. The second metallic closed layer (46, 56) includes a plurality of second wires or strands helically twisted together with said core element (42, 52) and said first metallic closed layer (44, 54) in a second direction. The cross-sectional area of the core element (42, 52) is larger than the total cross-sectional area of the first (44, 54) and second (46, 56) metallic closed layers. A corresponding method of producing such a hybrid rope or hybrid strand is also disclosed.
Abstract:
The present invention is to provide a hybrid core rope which does not require maintenance or a hybrid core rope capable of reducing a maintenance task. The hybrid core rope includes a resin solid core in which a plurality of spiral grooves is formed in the longitudinal direction on an outer peripheral surface thereof, a plurality of fiber bundles respectively spirally wound around the outer peripheral surface of the resin solid core along the plurality of spiral grooves, the fiber bundles having thickness to fill the spiral grooves, and a plurality of steel strands spirally wound around the outer peripheral surface of the resin solid core around which the fiber bundles are wound. The fiber bundles and the strands are respectively wound so as to have angles which are not parallel to each other.
Abstract:
A wire rope for a heavy-load crane, such as a ladle crane is provided that is not only almost rotation-resistant but is also unlikely to be broken by wear and fatigue of wires. The rotation-resisting wire rope has a plurality of side strands. In side each strand, wires are laid in the same direction as the lay of core strand wires, around the periphery of a core strand. The side strands are laid in a direction opposite to the lay of the core strand wires so as to form the wire rope. The side strands preferably have a smaller pitch multiple than a pitch multiple of the wire rope. The ratio between a diameter of the side strands and a diameter of the core strand is preferably about 1.3 to about 1.8. The pitch multiple of strands is preferably about 5 to about 8 and the pitch multiple of the wire rope is preferably about 8 to about 10. Both the core strand and the side strands preferably have shaped wires, having a flattened surface, at an outermost ply.
Abstract:
The present rope is torsion free mainly because it has an inner rope formed by an inner layer of strands which is surrounded by an outer layer of strands and since the inner rope is constructed of at least three flattened strands and at least three round strands which are smaller than the flattened strands to fill the spacings between adjacent flattened strands. The inner strands surround a center member of elastic material.
Abstract:
The invention relates to a rope (1) made of textile fibre material, which is characterized by the combination of features wherebya) the load-bearing fibre material of the rope (1) consists of high-strength synthetic fibresb) the rope (1) is in the form of a spiral strand ropec) the rope (1) has at least two, preferably at least three concentric load-bearing strand layers (3,4,5)d) the individual strands (7,8,9,10,11,12) of the strand layers (3,4,5) are movable with respect to one anothere) the degree of filling of the rope (1) with textile fibre material is ≧75%, preferably ≧85%f) the outermost ply (5,6) of the rope has a coefficient of frictionμ with respect to steel of μ
Abstract:
Hybrid rope (20) comprising a core element (22) containing high modulus fibers surrounded by at least one outer layer (24) containing wirelike metallic members (26). The core element (22) is coated (23) with a thermoplastic polyurethane or a copolyester elastomer, preferably the copolyester elastomer containing soft blocks in the range of 10 to 70 wt %. The coated material (23) on the inner core element (22) is inhibited to be pressed out in-between the wirelike members (26) of the hybrid rope (20) and the hybrid rope (20) has decreased elongation and diameter reduction after being in use.