Abstract:
A metal cord used as a reinforcement for rubber products. The cord includes a strand core composed of a plurality of metal wires stranded with each other. A plurality of metal wires are stranded around the strand core, forming a strand layer. The number of the metal wires which form the strand layer is less than 4 plus the number of the metal wires which form the strand core, and each of the metal wires which form both the strand core and layer has substantially the same diameter.
Abstract:
A metallic cable comprises a strand of identical helical shaped filaments positioned beside and against each other such that each filament of the strand is in line contact with at least one other filament of the strand. The helixes of the filaments of the strand are sloped in a first direction. A single filament is twisted with the strand in a direction opposite to said first direction. An apparatus and a method for manufacturing the metallic cable are also disclosed.
Abstract:
The present invention relates to the improvement of metal cords for the reinforcement of elastomeric bodies, in particular of vehicle tires which are provided with retaining helixes on their outsides. The problem was to avoid the disadvantageous properties of the retaining helixes in reinforced elastomeric bodies, namely, the impairment of the inherent elasticity of the metal cord and the fretting of the retaining helixes on the outer layer of the metal cord. The problem particularly resided in the improvement of socalled compact cords, meaning cords consisting of layers of identical twisting sense. For the solution of this problem, it is proposed to provide a core strand of shorter twisting pitch (twisting pitch ratio of preferably 1:2 or less) than the twisting pitch of the adjacent outer layer; this in particular in the case of metals cords having more than two layers. For this purpose, the retaining helix can be of a cross section deviating from a circle, in particular of flattened cross section, and consists of metal or of a material whose softening temperature is at least partially lower than or within the cross-linking temperature range of the elastomer to be reinforced; the retaining helix can have the form of a metal/plastics composite or compound body or of a plastics body. The softening portion of the material of the retaining helix is so selected that it is compatible with the elastomer, meaning that no reactions impairing the adhesion between metal cord and elastomer occur between the softening portion of the material of the retaining helix and the elastomer.
Abstract:
A metal cord (C-1) having two layers (Ci, Ce) of 3+N construction, rubberized in situ, comprising an inner layer (Ci) formed from three core wires (10) of diameter d1 wound together in a helix with a pitch p1 and an outer layer (Ce) of N wires (11) N varying from 6 to 12, of diameter d2, which are wound together in a helix with a pitch p2 around the inner layer (Ci), said cord being characterized in that it has the following characteristics (d1, d2, p1 and p2 being in mm): 0.08
Abstract:
Metal cord of K×(L+M) construction. K elementary strands assembled in a helix, with pitch PK, each having a cord with L wire inner layer of diameter d1, and M wire outer layer of diameter d2, in a helix with pitch p2 around the inner layer; with (in mm): 0.10
Abstract:
A method of manufacturing a metal cord with two concentric layers of wires is provided. The cord includes an internal layer of M wires, M having a value from 1 to 4, and an external layer of N wires. The cord is rubberized from within in situ. That is, during manufacture of the cord, the cord is rubberized from inside. According to the method, the internal layer is sheathed with rubber or a rubber compound by passing the internal layer through an extrusion head, and the N wires of the external layer are assembled around the sheathed internal layer to form a two-layer cord rubberized from the inside. The rubber is an unsaturated thermoplastic elastomer that is extruded in a molten state, and preferably is a thermoplastic styrene (TPS) type of thermoplastic elastomer, such as an SBS or an SIS block copolymer, for example.
Abstract:
Elastic metal/textile composite cord (C-1) having two layers (Ci, Ce) of 1+N construction, formed from a core or inner layer (Ci) comprising a textile core thread (10) of diameter d1 and a metal outer layer (Ce) of N wires (12) of diameter d2 wound together in a helix with a pitch p2 around the layer Ci, said cord being characterized in that it has the following characteristics (p2 in mm): As>1.0%; At>4.0%; Af>6.0%; d1>1.1d2; 4
Abstract:
In order that spaces, including a space in the central portion, inside a steel cord used as a reinforcement by being embedded in a tire or the like are filled with an uncured rubber, the uncured rubber is coated on plural steel core filaments which are then stranded to form a single layer steel cord, the core then being stranded with uncoated outer layer filaments. Consequently, it is possible to exhibit satisfactory corrosion resistance and satisfactory fatigue resistance as a steel cord, shorten a curing time in tire component assembling or the like to attain energy saving and prolong the life of a steel cord itself and the life of a tire or the like using the same as a reinforcement. Further, production can be performed at low cost.
Abstract:
The present invention relates to a metal cable usable for reinforcing a carcass reinforcement for a tire, such as a heavy-vehicle tire, to a composite fabric usable as a ply for such a carcass reinforcement, to a carcass reinforcement comprising this fabric and to a tire incorporating this carcass reinforcement. A metal cable according to the invention comprises a textile wrap, and is such that said wrap is formed of an aromatic thermotropic polyester or polyester amide. A composite fabric according to the invention is such that it comprises a rubber composition which is reinforced by said cables. A tire according to the invention has its carcass reinforcement comprising said composite fabric.
Abstract:
A heavy duty pneumatic tire comprises a belt disposed radially outside a carcass and radially inside a tread portion, the belt comprising at least one ply of at least one high-elongation steel cord, the high-elongation steel cord being formed by twisting at least three waving steel filaments together to form a core and a sheath surrounding the core. The waving filaments change place repeatedly along the longitudinal direction of the cord such that one of the filaments forms the core in a portion, but in a different portion of the cord, the same filament forms part of the sheath, thereby defining a plurality of first parts with the core and a plurality of second parts without the core which are disposed alternately in the longitudinal direction of the cord. The elongation at break of the high-elongation steel cord is in the range of from 4 to 10%.