Abstract:
A detector structure having a sensor for detecting energy impinging on the structure in the infrared and/or optical frequency band; an electronics section disposed behind the sensor for processing electrical signal produced by the sensor in response to the sensor detecting the infrared and/or optical energy; and an electrically conductive layer for inhibiting electromagnetic energy outside of the visible and infrared portions of the spectrum, such electrically conductive layer being disposed between impinging energy and the electronics section, such layer having a transmissivity greater than 90 percent in the visible and infrared portions of the spectrum and being reflective and/or dissipative to portions of the impinging energy outside of the visible and infrared portions of the spectrum. In one embodiment an electrically conductive layer having a substantially constant absorptivity to electromagnetic energy within the visible and infrared portions of the spectrum. In one embodiment, the layer is graphene.
Abstract:
The present invention is directed to a camera, computer program, and method for determining and displaying temperature rates of change for objects within the camera's field of view. More specifically, the embodiments provide for the continuous, real-time temperature measurement and display of a plurality of objects within the camera's field of view, and further for the real-time processing and display of the temperature rates of change for said objects.
Abstract:
The invention relates to a bolometer element, a bolometer cell, a bolometer camera, and a method for reading a bolometer cell. The bolometer cell comprises several bolometer elements. Each bolometer element comprises a first bolometer having a first heating resistance for sensing radiation power acting on the element, and a second bolometer having a second heating resistance, and in each bolometer element the first and second bolometers are electrically connected to each other in such a way that the heating resistance (611) of the first bolometer can be biased with the aid of a voltage through the heating resistance of the second bolometer in order to amplify the radiation power detected with the aid of the connection. With the aid of the invention, it is possible to implement an extremely sensitive bolometer camera.
Abstract:
An imaging device comprises a select line, a first signal line crossing the select line, and a first pixel provided at a portion corresponding to a crossing portion of the select line and the first signal line, the first pixel comprising a first buffer layer formed on a substrate, a first bolometer film formed on the first buffer layer, made of a compound which undergoes metal-insulator transition, and generating a first temperature detection signal, a first switching element formed on the substrate, selected by a select signal from the select line, and supplying the first temperature detection signal to the first signal line, and a metal wiring connecting a top surface of the first bolometer film to the first switching element.
Abstract:
An infrared detection film of which a dielectric constant is changed according to a temperature change is characterized in that the infrared detection film has a composition expressed by Ba(Ti1-xSnx)O3 (0
Abstract translation:介电常数根据温度变化而变化的红外线检测膜的特征在于,红外线检测膜具有由Ba(Ti 1-x Sn Sn x x)/ (O
Abstract:
Preferred embodiments include a monolithic uncooled infrared detector array of bolometers fabricated over a silicon substrate (142); the bolometers include a stack (144) of oxide (146) TiN (148), a-Si:H (150), TiN (152), oxide (154) with the TiN forming the infrared absorbers and resistor contacts and the a-Si:H the resistor with a high temperature coefficient of resistivity. The resistor is suspended over the silicon substrate (142) by metal interconnects (154 and 156) and related processing circuitry is formed in the silicon substrate (142) beneath the resistor.
Abstract:
Infrared, mm-wave or other radiation (100) is detected with at least one detector element in the form of a temperature-sensitive resistor (1) having a high positive temperature coefficient, e.g. 100 micro-ohm.multidot.cm.multidot.K.sup.-1. A sufficiently high voltage V is applied across the resistor (1) by means of a circuit (Vb,T1) so that, in accordance with the invention, the resistor (1) passes a sufficient current (I) as to raise its temperature by Joule heating to a position at which a further increase in its temperature in response to incident radiation (100) reduces the Joule heating by reducing the current (I), thereby stabilizing the temperature of the resistor (1). This varying current (I) through the resistor (1) is measured (e.g. as a voltage V' by means of a transconductance amplifier A) to provide a signal indicative of the power of the incident radiation (100). The change in the Joule heating produced by a change in the temperature of the resistor (1) at this position is larger (e.g. more than 10 times larger) than a change in power of the incident radiation (100) required to produce that same change in temperature of the resistor (1) in the absence of any change in Joule heating. As a result of this internal stabilization of its temperature due to the changes in Joule heating, the detector element (1) has a short time constant for response, and thermal cross-talk problems do not arise for an array of the detector elements (1) sharing a common body of the resistance material. The resistance material may be, e.g., a semiconducting barium titanate operated around or above ambient temperature, or an oxygen-deficient mixed oxide of barium, copper and yttrium which is superconducting when cooled below its high positive temperature coefficient. The resistor(s) may be mounted on a semiconductor circuit, possibly on a cryogenic cooler.
Abstract:
An electromagnetic wave sensor includes: a first wire which extends in a first direction; a second wire which extends in a second direction different from the first direction; and an electromagnetic wave detector which is electrically connected to the first wire and is electrically connected to the second wire, wherein the second wire is provided so as to leave an interval with respect to the first wire in a third direction orthogonal to the first direction and the second direction, and the second wire is disposed to three-dimensionally intersect the first wire. At least one wire of the first wire and the second wire includes a wide portion, which is wider than an average value of a width of a portion excluding an overlapping portion of the at least one wire, in the overlapping portion in which the first wire and the second wire overlap each other.
Abstract:
A photodetector interface circuit is described, residing partially or fully within a unit cell per pixel of an FPA. The interface circuit uses an innovative approach to providing pixel level digitization for full frame integration times while maintaining the ability to use integration capacitors of practical sizes. The technique uses successive charge subtraction, removing charge from an integration capacitor successively, triggered by the charge increasing sufficiently to charge the integrator to a reference level, thereby triggering both charge removal and incrementing a count, until all of the current flowing in the photodetector has been accounted for and the count represents the digitization of the photodetector signal. Various options on how to arrange the digitization elements are also disclosed.
Abstract:
Disclosed is a bolometer type infrared detector comprising: a substrate, a bolometer film comprising semiconducting carbon nanotubes, and two electrodes spaced from each other and connected to the bolometer film, wherein at least one of the two electrodes is formed of a metal alloy comprising at least two metals selected from the group consisting of Li, Be, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, In, Sn, Sb, Ba, La, Hf, Ta, Ir, Pt, Au, and Bi.