Abstract:
The present invention is intended to make reduction of interference influence and reduction of a measurement error compatible in a quantitative analysis of one or more measurement target components and to provide a analyzing device (100) that quantitatively analyzes one or more measurement target components in a sample using a spectral spectrum obtained by irradiating light to the sample, wherein the analyzing device is adapted to switch the library data between a first generation condition in a period of a predetermined time lapse after starting the sample gas generation and a second generation condition after the predetermined time lapse, wherein under the first generation condition, a plurality of measurement target components are quantitatively analyzed using the first library data obtained by compensating interference influence of measurement extra-target components; and under the second generation condition, the quantitative analysis of a plurality of measurement target components is performed using second library data obtained without compensating interference influence of the measurement extra-target components.
Abstract:
A spectrometer is described, especially for an optical coherence tomograph for detecting parameters of the human eye, with said spectrometer having an input for measurement radiation to be analyzed, fanning the measurement radiation spectrally out along a direction in a fan and guiding it onto a detector that extends along the direction and comprises a plurality of detector pixels that are sensitive to the measurement radiation, with the spectrometer having an adjusting element which can be adjusted in a controlled manner to adjust the relative position of the fan and the detector, thereby optimizing the incidence position of the fan on the detector, in which it is provided that the detector has at least two superimposed, adjacent pixel lines, and a control device is provided which reads out the superimposed pixels of a plurality of pixel lines in a combined manner for a spectral analysis of the measurement radiation in a pixel binning and evaluates signal differences between superimposed pixels to control the adjusting element and to center the incidence position of the fan at a right angle to the direction of the pixel lines.
Abstract:
Provided is a small, highly accurate Fourier spectrometer which enables highly accurate detection of an optical path difference in an interferometer. An element for changing to a narrow band is provided to return reflected light to a second light source (4), and the wavelength of light emitted by the second light source is locked, whereby the position of a movable mirror (8) is measured highly accurately and an optical path length (1) and an optical path length (2) match highly accurately.
Abstract:
A novel means of provided a hybrid flexure mounted moving mirror component in an interferometer is introduced herein. In particular, a linear bearing in combination with a novel flexure mounting having novel tilt and velocity control of the moving optical component is provided. Such an arrangement enables correction of the errors at the mirror itself while also solving the problem of isolating vibration and noise caused by the imperfections in the bearing surfaces used in many conventional interferometers. Using such a coupled flexure mounting of the present invention, in addition to the above benefits, also enhances velocity control because the resultant low mass of the moving mirror assembly enables the systems disclosed herein to respond faster than conventional mirror velocity controlled interferometer instruments and with a lower velocity error so as to provide a more stable and lower noise spectra from the analytical instrument.
Abstract:
The invention relates to an apparatus for generating a scannable optical delay for a beam of light and an apparatus for Fourier domain optical coherence tomography having said apparatus for generating a scannable optical delay in its reference arm (15). The light beam is directed to a pivotably driven mirror (10) from where it is reflected to a fixed mirror (12), and from there back retro reflected along the reference arm (5). Lens optics (9) are provided to ensure accurate optical alignment in several pivot positions of the pivotably driven mirror (10).
Abstract:
We disclose apparatus that includes: (a) an enclosure including an aperture; (b) a prism mounted in the enclosure so that a surface of the prism is exposed through the aperture; (c) an optical assembly contained within the enclosure, the optical assembly including a radiation source and a radiation detector, the source being configured to direct radiation towards the prism and the detector being configured to detect radiation from the source reflected from the exposed surface of the prism; and (d) an electronic processor contained within the enclosure, the electronic processor being in communication with the detector. The apparatus can be configured so that, during operation, the electronic processor determines information about a sample placed in contact with the exposed surface of the prism based on radiation reflected from the exposed prism surface while it is in contact with the sample.
Abstract:
A Fourier Transfer Infrared (FTIR) spectrophotometer having reduced baseline noise. The system and method include internal or external optical adapters having a moveable beamsplitter for splitting the source light beam into a reference beam and a sample beam, and may include a variable bandpass filter, variable preamplifier and reversed biased photodiodes.
Abstract:
A laser interferometer, such as a dual path Michelson interferometer, is used to generate fringe patterns resulting from one of a plurality of optical paths passing through a sample gas. An artificial neural network, such as, for example, a KASER neural network, is used to recognize patterns in the fringe interference patterns corresponding to known target gases.
Abstract:
A Micro-Electro-Mechanical Systems (MEMS) interferometer is implemented in a Fourier transform spectrometer, which includes a common housing containing the interferometer and a gas cell, possibly including a preconcentrator. The interferometer system includes an optical bench and at least two mirror structures, being patterned from one or more layers on the optical bench and erected to extend substantially perpendicularly to the bench to define two interferometer arms to provide a MEMS interferometer.
Abstract:
A two-beam interferometer for Fourier Transform spectroscopy has a double pivot scanning mechanism. The interferometer has two rigid pendulums that are each rotatable to swing around an associated one of distinct axes of rotation. A linkage links the two rigid pendulums to each other and constrains their rotation relative to each other. The interferometer has bearings, which may be flexure bearings, for rotatably mounting the two pendulums to swing around an associated one of the distinct axes of rotation and a first and a second bearing linking the linkage to an associated one of the pendulums. The two rigid pendulums, the linkage and the bearings can be a monolithic structure.