Abstract:
A temperature sensor that has a thermally conducting contact with a surface that emits electromagnetic radiation in proportion to the temperature of the contact is disclosed. The sensor has a resilient member attached to the contact and configured to extend the contact toward the object to be measured. A first light waveguide is attached to the contact and is configured to transmit the electromagnetic radiation from the contact. The sensor has a guide with a bore formed therein that the first waveguide is insertable into. When the contact is moved, the first waveguide moves within the bore. A second waveguide is attached to the guide such that a variable gap is formed between the ends of the first waveguide and the second waveguide. Electromagnetic energy from the first waveguide traverses the gap and can be transmitted by the second waveguide. The guide allows the first waveguide to move with the contact in order to ensure that the contact is fully engaged with the surface of the object.
Abstract:
A device for measuring the temperature of a measured spot of a measured object without contacting the measured object is provided. The device includes a detector on which electromagnetic radiation emanating from the measured spot is projected by an optical imaging system. A sighting device for marking the position and/or the size of the measured spot includes at least two light sources. Each of the two light sources provides a respective sighting ray.
Abstract:
According to one embodiment, a passive infrared sensor 1 includes an infrared sensing element 4, a pair of lenses 5R and 5L, and main mirrors 22R and 22L. A submirror 24R is disposed on the main mirror 22R. The submirror 24R is configured so that, with respect to the main mirror 22R, the orientation of the submirror 24R is changed by a first predetermined angle in regard to the horizontal direction in a direction away from an attachment surface 30 at the installation time, and the orientation of the submirror 24R is changed by a second predetermined angle in regard to the vertical direction in a direction downward at the installation time. A submirror 23L is disposed on the main mirror 22L. The submirror 23L is configured so that, with respect to the main mirror 22L, the orientation of the submirror 23L is changed by a first predetermined angle in regard to the horizontal direction in a direction away from the attachment surface 30 at the installation time, and the orientation of the submirror 23L is changed by a second predetermined angle in regard to the vertical direction in a direction downward at the installation time.
Abstract:
Method and apparatus are provided for visibly outlining the energy zone to be measured by a radiometer. The method comprises the steps of providing a laser sighting device on the radiometer adapted to emit more than two laser beams against a surface whose temperature is to be measured and positioning said laser beams about the energy zone to outline said energy zone. The apparatus comprises a laser sighting device adapted to emit more than two laser beams against the surface and means to position said laser beams about the energy zone to outline said energy zone. The laser beams may be rotated about the periphery of the energy zone. The laser beams may be rotated about the periphery of the energy zone. In another embodiment, a pair of laser beams are projected on opposite sides of the energy zone. The laser beams may be further pulsed on and off in a synchronized manner so as to cause a series of intermittent lines to outline the energy zone. Such an embodiment improves the efficiency of the laser and results in brighter laser beams being projected. In yet another embodiment, a primary laser beam is passed through or over a beam splitter or a diffraction grating so as to be formed into a plurality of secondary beams which form, where they strike the target, a pattern which defines an energy zone area of the target to be investigated with the radiometer. Two or more embodiments may be used together. A diffraction device such as a grating may be used to form multiple beams. In a further embodiment, additionally laser beams are directed axially so as to illuminate the center or a central are of the energy zone.
Abstract:
Method and apparatus are provided for visibly outlining the energy zone to be measured by a radiometer. The method comprises the steps of providing a laser sighting device on the radiometer adapted to emit more than two laser beams against a surface whose temperature is to be measured and positioning said laser beams about the energy zone to outline said energy zone. The apparatus comprises a laser sighting device adapted to emit more than two laser beams against the surface and means to position said laser beams about the energy zone to outline said energy zone. The laser beams may be rotated about the periphery of the energy zone. The laser beams may be rotated about the periphery of the energy zone. In another embodiment, a pair of laser beams are projected on opposite sides of the energy zone. The laser beams may be further pulsed on and off in a synchronized manner so as to cause a series of intermittent lines to outline the energy zone. Such an embodiment improves the efficiency of the laser and results in brighter laser beams being projected. In yet another embodiment, a primary laser beam is passed through or over a beam splitter or a diffraction grating so as to be formed into a plurality of secondary beams which form, where they strike the target, a pattern which defines an energy zone area of the target to be investigated with the radiometer. Two or more embodiments may be used together. A diffraction device such as a grating may be used to form multiple beams. In a further embodiment, additionally laser beams are directed axially so as to illuminate the center or a central are of the energy zone.
Abstract:
A continuously variable diaphragm or swappable fixed aperture for use in thermal infrared cameras, which aperture or diaphragm can be cooled to cryogenic temperatures. The invention contemplates mounting aperture control means, if necessary, in a vacuum or extending the control mechanism through a vacuum in a thermally isolated manner to avoid radiation load on the photocell. The inventive method implements such a diaphragm and control system. The invention makes possible the object of using a single thermal infrared camera under a wide variety of target-scene radiation conditions that may be rapidly changing, with interchangeable or zoom camera lenses requiring matching or different size cold stops, and under other such dynamic situations.
Abstract:
Disclosed are an infrared sensor assembly and a refrigerator having the infrared sensor, in which a location where a heat source is generated is precisely detected by narrowing a receiving angle of an infrared sensor. To this end, the infrared sensor assembly comprises: an infrared sensor fixed to a supporting frame for receiving infrared rays generated at a heat source; a case having the infrared sensor mounted therein and an infrared filter mounted at an upper surface thereof, the infrared filter transmits only the infrared rays; and a receiving range limiting means prolonged from an outer circumference surface of the case with a predetermined height for limiting a range of the infrared rays received into the infrared sensor so as to precisely detect a location of the heat source.
Abstract:
An infrared imaging device includes a board which is movable inside the infrared imaging device, plural kinds of magnification lenses, and plural kinds of infrared light radiation parts which radiate infrared lights having respective radiation temperatures, wherein the lenses and the infrared light radiation parts are situated on the board.
Abstract:
The invention relates to modification of a laser beam produced, for purposes of aiming at a target, by instruments for measuring, controlling and treatment, such as pyrometers. It is known to provide such instruments with a single laser beam for aiming purposes. It is also known to provide such instruments with a plurality of divergent beams serving to define an area of a target. In a first embodiment the present invention provides a carrier having a beam splitter movable out of and into the path of the laser beam so as to provide respectively a single aiming beam and a plurality of fractional beams for defining an area of a target. In a preferred form, provision is made for periodical and repeated movement of the beam splitter into and out of the path of the aiming laser beam. In another embodiment, provision is made to increase the power of the single aiming beam at the time of splitting it into fractional beams; conversely where a relatively high power is applied to the laser beam whilst it is split to provide fractional beams, provision is made to reduce the power of the laser at such times as it has reverted to a single laser beam, or again to pass the single laser beam through an attenuator. A further feature is the provision of movement of the beam splitter into and out of the path of the aiming laser beam at a rate high enough to ensure persistence of vision, say at least twelve times per second. A further feature of the invention is the construction of the beam-splitter carrier and of the instrument so as to be readily engageable onto and disengageable from each other, as for example by screw-threading, push-fit, snap-action or other readily releasable mechanical structure. The invention further provides methods, for aiming of such an instrument at a target by use of a single beam, and splitting the aiming beam into fractional beams for defining a selected area of the target, and particularly as an automatically repeated action, the fractional beams being directed, for example, to indicate points on the target bounding a selected area thereof, or again being directed at successive shifted points bounding the selected area of the target, or yet again with the fractional beams being merged to define a closed loop area of the target.
Abstract:
A two-piece portable, self-contained tympanic thermometer temperature measuring system includes a measuring unit and a base unit. The measuring unit can be ergonomically designed as a compact, pencil-shaped, easy to hold unit that includes a removable sensing module that interfaces with the base unit and/or other host via digital signaling. All analog circuitry can be self-contained within the sensor module, and the sensing module circuitry components may be potted with thermally conductive epoxy to reduce variations due to differences in component temperatures. The sensing module casing may be made out of a conductor to provide electromagnetic field isolation. The sensing module can include a microcontroller that communicates with a microcontroller in the base unit via a removable modular 4-conductor telephone handset cord. The measuring unit preferably has the capability to measure the amount of pressure it is applying to the patient's ear—and thus, the ability to sense when it is in position and has sealed the patient's outer ear canal. Temperature measurement can be performed automatically and/or inhibited in response to this pressure sensing.