Abstract:
Disclosed in the present invention is a visual monitoring method for cross-section temperature fields and radiation characteristics of boiler furnaces by combining radiation images and spectra. Image detectors can be directly inserted into observation holes of a boiler to acquire flame image data, so that when the detection system is applied to a power station boiler, extra holes are not required to be drilled, and therefore, there is no risk that the strength of a furnace wall of the boiler is reduced by drilling holes. According to cross-section temperature fields of a furnace measured by the detection system, the state of combustion in the furnace can be accurately judged, which can play an accurate and effective guiding role in boiler combustion control, and reduce the temperature deviation in each combustion area of the boiler so as to keep the boiler running smoothly, thereby improving the combustion efficiency of the boiler.
Abstract:
A bidirectional reflectance distribution function (BRDF) measurement system and method, an electronic device, and a storage medium. The BRDF measurement system includes: a blackbody, a spectroradiometer and a controller; where in case that the blackbody is heated to a target temperature, it undergoes a solid-liquid phase change; the spectroradiometer is used to measure the blackbody and transmit a first measurement signal to the controller, and in case that the blackbody irradiates a to-be-measured point on a sample surface, the spectroradiometer is further used to measure radiation from the to-be-measured point, and transmit a second measurement signal to the controller; and the controller is used to obtain a BRDF of the to-be-measured point based on the first measurement signal, the second measurement signal, the target geometric relationship, a target mapping relationship and a dimension parameter of the blackbody.
Abstract:
A temperature monitoring system for a substrate heating furnace includes a temperature monitor, and the temperature monitor is located on a prong of a mechanical arm which is configured to fetch and place a substrate. The temperature monitor is configured to monitor the temperature of the substrate which has been heated by the substrate heating furnace and is located on the prong.
Abstract:
Devices, systems, and techniques for monitoring the temperature of a device used to charge a rechargeable power source are disclosed. Implantable medical devices may include a rechargeable power source that can be transcutaneously charged. The temperature of an external charging device and/or an implantable medical device may be monitored to control the temperature exposure to patient tissue. In one example, a temperature sensor may sense a temperature of a portion of a device, wherein the portion is non-thermally coupled to the temperature sensor. A processor may then control charging of the rechargeable power source based on the sensed temperature.
Abstract:
A high SNR in-situ measurement of sample radiance in a low-temperature ambient environment is used to accurately characterize sample emissivity for transmissive, low-emissivity samples. A low-e mirror is positioned behind the sample such that the sample and low-e mirror overfill the field-of-view (FOV) of the radiometer. The sample is heated via thermal conduction in an open environment. Thermal conduction heats the sample without raising the background radiance appreciably. The low-e mirror presents both a low emission background against which to measure the sample radiance and reflects radiance from the back of the sample approximately doubling the measured signal. The low-e mirror exhibits a reflectance of at least 90% and preferably greater than 98% and an emissivity of at most 7.5% and preferably less than 2% over the spectral and temperature ranges at which the sample emissivity is characterized.
Abstract:
A device for determining a physical value of a liquid flowing in a pipe, without contact with said liquid, said device comprising: a sensor (3) for said physical value; a connector (2) to insert into said pipe and comprising: an internal passage (13) extending between two apertures (11, 12), a flexible membrane (6) for a pressure sensor, forming a wall of said internal passage (13); and means (27, 62) for fastening said sensor (3) onto said connector (2); characterized in that said sensor is a temperature sensor (3) fastened to said connector (2) with the sensitive part of said sensor (3) turned towards said membrane (6).
Abstract:
A device for determining a physical value of a liquid flowing in a pipe, without contact with the liquid. The device includes: a sensor for the physical value; a connector to insert into the pipe and including: an internal passage extending between two apertures, a flexible membrane for a pressure sensor, forming a wall of the internal passage; and a fastening mechanism for fastening the sensor onto the connector. The sensor is a temperature sensor fastened to the connector with the sensitive part of the sensor turned towards the membrane.
Abstract:
A geometrically shaped photonic crystal structure consisting of alternating layers of thin films is heated to emit light. The structure may include index matching layers or a cavity layer to enhance emissions. The layer thicknesses of the structure may be spatially varied to modify the emission spectrum versus emission angle. The self-focusing structure may be fabricated into a convex electrically heated wire filament light bulb, a concave visible thermophotovoltaic emitter, a concentric directional heat exchanger, an electronic display, or a variety of irregularly shaped remotely read temperature or strain sensors.
Abstract:
Silicon Carbide (SiC) probe designs for extreme temperature and pressure sensing uses a single crystal SiC optical chip encased in a sintered SiC material probe. The SiC chip may be protected for high temperature only use or exposed for both temperature and pressure sensing. Hybrid signal processing techniques allow fault-tolerant extreme temperature sensing. Wavelength peak-to-peak (or null-to-null) collective spectrum spread measurement to detect wavelength peak/null shift measurement forms a coarse-fine temperature measurement using broadband spectrum monitoring. The SiC probe frontend acts as a stable emissivity Black-body radiator and monitoring the shift in radiation spectrum enables a pyrometer. This application combines all-SiC pyrometry with thick SiC etalon laser interferometry within a free-spectral range to form a coarse-fine temperature measurement sensor. RF notch filtering techniques improve the sensitivity of the temperature measurement where fine spectral shift or spectrum measurements are needed to deduce temperature.
Abstract:
An infrared thermometer includes a probe and an infrared sensor. The probe with an infrared target absorbs thermal radiation to provide a substantially consistent source of infrared radiation and an aperture for preventing contamination of the infrared target while permitting the transmission of thermal radiation to the target. The infrared sensor is configured for sensing infrared radiation from the infrared target. The infrared target is positioned within the probe such that it absorbs thermal radiation that comes from the aperture and thereafter emits thermal radiation to the infrared sensor.