BRDF MEASUREMENT SYSTEM AND METHOD, ELECTRONIC DEVICE, AND STORAGE MEDIUM

    公开(公告)号:US20240133749A1

    公开(公告)日:2024-04-25

    申请号:US18488836

    申请日:2023-10-17

    Abstract: A bidirectional reflectance distribution function (BRDF) measurement system and method, an electronic device, and a storage medium. The BRDF measurement system includes: a blackbody, a spectroradiometer and a controller; where in case that the blackbody is heated to a target temperature, it undergoes a solid-liquid phase change; the spectroradiometer is used to measure the blackbody and transmit a first measurement signal to the controller, and in case that the blackbody irradiates a to-be-measured point on a sample surface, the spectroradiometer is further used to measure radiation from the to-be-measured point, and transmit a second measurement signal to the controller; and the controller is used to obtain a BRDF of the to-be-measured point based on the first measurement signal, the second measurement signal, the target geometric relationship, a target mapping relationship and a dimension parameter of the blackbody.

    CHARACTERIZATION OF SPECTRAL EMISSIVITY VIA THERMAL CONDUCTIVE HEATING AND IN-SITU RADIANCE MEASUREMENT USING A LOW-e MIRROR
    5.
    发明申请
    CHARACTERIZATION OF SPECTRAL EMISSIVITY VIA THERMAL CONDUCTIVE HEATING AND IN-SITU RADIANCE MEASUREMENT USING A LOW-e MIRROR 有权
    通过使用低电流反射镜的热传导加热和现场辐射测量来表征光谱辐射

    公开(公告)号:US20160305821A1

    公开(公告)日:2016-10-20

    申请号:US14688617

    申请日:2015-04-16

    CPC classification number: G01J5/0003 G01J5/00 G01J5/0887

    Abstract: A high SNR in-situ measurement of sample radiance in a low-temperature ambient environment is used to accurately characterize sample emissivity for transmissive, low-emissivity samples. A low-e mirror is positioned behind the sample such that the sample and low-e mirror overfill the field-of-view (FOV) of the radiometer. The sample is heated via thermal conduction in an open environment. Thermal conduction heats the sample without raising the background radiance appreciably. The low-e mirror presents both a low emission background against which to measure the sample radiance and reflects radiance from the back of the sample approximately doubling the measured signal. The low-e mirror exhibits a reflectance of at least 90% and preferably greater than 98% and an emissivity of at most 7.5% and preferably less than 2% over the spectral and temperature ranges at which the sample emissivity is characterized.

    Abstract translation: 在低温环境下采用高信噪比原样测量样品辐射,用于准确表征透射低发射样品的样品辐射率。 低e镜位于样品后面,使得样品和低e镜超过辐射计的视野(FOV)。 样品在开放环境中通过热传导加热。 热传导加热样品,而不会明显提高背景亮度。 低e镜呈现低发射背景,可测量样品辐射,并反射样品背面的辐射率近似将测量信号加倍。 低辐射镜在表征样品辐射率的光谱和温度范围内呈现至少90%,优选大于98%的反射率和至多7.5%,优选小于2%的发射率。

    Device for determining a physical value of a liquid flowing in a pipe
    6.
    发明授权
    Device for determining a physical value of a liquid flowing in a pipe 有权
    用于确定在管中流动的液体的物理值的装置

    公开(公告)号:US08485044B2

    公开(公告)日:2013-07-16

    申请号:US13606389

    申请日:2012-09-07

    Abstract: A device for determining a physical value of a liquid flowing in a pipe, without contact with said liquid, said device comprising: a sensor (3) for said physical value; a connector (2) to insert into said pipe and comprising: an internal passage (13) extending between two apertures (11, 12), a flexible membrane (6) for a pressure sensor, forming a wall of said internal passage (13); and means (27, 62) for fastening said sensor (3) onto said connector (2); characterized in that said sensor is a temperature sensor (3) fastened to said connector (2) with the sensitive part of said sensor (3) turned towards said membrane (6).

    Abstract translation: 一种用于确定在管道中流动而不与所述液体接触的液体的物理值的装置,所述装置包括:用于所述物理值的传感器(3); 插入所述管道中的连接器(2),包括:在两个孔(11,12)之间延伸的内部通道(13),用于压力传感器的柔性膜(6),形成所述内部通道(13)的壁, ; 以及用于将所述传感器(3)紧固到所述连接器(2)上的装置(27,62); 其特征在于,所述传感器是紧固到所述连接器(2)的温度传感器(3),所述传感器(3)的敏感部分朝向所述膜(6)转动。

    Shaped selective thermal emitter
    8.
    发明授权
    Shaped selective thermal emitter 失效
    形状选择性热发射器

    公开(公告)号:US08134285B2

    公开(公告)日:2012-03-13

    申请号:US11961639

    申请日:2007-12-20

    CPC classification number: H01K1/14 G01J5/08 G01J5/0887 G01J5/60 H01K1/04

    Abstract: A geometrically shaped photonic crystal structure consisting of alternating layers of thin films is heated to emit light. The structure may include index matching layers or a cavity layer to enhance emissions. The layer thicknesses of the structure may be spatially varied to modify the emission spectrum versus emission angle. The self-focusing structure may be fabricated into a convex electrically heated wire filament light bulb, a concave visible thermophotovoltaic emitter, a concentric directional heat exchanger, an electronic display, or a variety of irregularly shaped remotely read temperature or strain sensors.

    Abstract translation: 由交替的薄膜组成的几何形状的光子晶体结构被加热以发光。 该结构可以包括折射率匹配层或空腔层以增强排放。 结构的层厚度可以在空间上变化以修改发射光谱对发射角。 自聚焦结构可以制造成凸形电加热丝灯丝灯泡,凹形可见热光电发射器,同心定向热交换器,电子显示器或各种不规则形状的远程读取温度或应变传感器。

    Extreme temperature robust optical sensor designs and fault-tolerant signal processing
    9.
    发明授权
    Extreme temperature robust optical sensor designs and fault-tolerant signal processing 失效
    极端温度坚固的光学传感器设计和容错信号处理

    公开(公告)号:US08096704B2

    公开(公告)日:2012-01-17

    申请号:US12468359

    申请日:2009-05-19

    Abstract: Silicon Carbide (SiC) probe designs for extreme temperature and pressure sensing uses a single crystal SiC optical chip encased in a sintered SiC material probe. The SiC chip may be protected for high temperature only use or exposed for both temperature and pressure sensing. Hybrid signal processing techniques allow fault-tolerant extreme temperature sensing. Wavelength peak-to-peak (or null-to-null) collective spectrum spread measurement to detect wavelength peak/null shift measurement forms a coarse-fine temperature measurement using broadband spectrum monitoring. The SiC probe frontend acts as a stable emissivity Black-body radiator and monitoring the shift in radiation spectrum enables a pyrometer. This application combines all-SiC pyrometry with thick SiC etalon laser interferometry within a free-spectral range to form a coarse-fine temperature measurement sensor. RF notch filtering techniques improve the sensitivity of the temperature measurement where fine spectral shift or spectrum measurements are needed to deduce temperature.

    Abstract translation: 用于极端温度和压力感测的碳化硅(SiC)探针设计使用封装在烧结SiC材料探针中的单晶SiC光学芯片。 SiC芯片可以被保护,仅用于高温或仅用于温度和压力感测。 混合信号处理技术允许容错极端温度感测。 波长峰 - 峰(或零到零)的共同频谱扩展测量以检测波长峰值/零位移测量使用宽带频谱监测形成粗细温度测量。 SiC探头前端充当稳定的发射率黑体散热器,并监测辐射光谱的偏移使高温计成为可能。 该应用将所有SiC高温测量法与自由光谱范围内的厚SiC标准具激光干涉测量结合在一起,形成粗细温度测量传感器。 RF陷波滤波技术提高了温度测量的灵敏度,需要精细的光谱偏移或光谱测量来推断温度。

    MULTI-SITE INFRARED THERMOMETER
    10.
    发明申请
    MULTI-SITE INFRARED THERMOMETER 有权
    多点红外测温仪

    公开(公告)号:US20100322282A1

    公开(公告)日:2010-12-23

    申请号:US12869154

    申请日:2010-08-26

    Abstract: An infrared thermometer includes a probe and an infrared sensor. The probe with an infrared target absorbs thermal radiation to provide a substantially consistent source of infrared radiation and an aperture for preventing contamination of the infrared target while permitting the transmission of thermal radiation to the target. The infrared sensor is configured for sensing infrared radiation from the infrared target. The infrared target is positioned within the probe such that it absorbs thermal radiation that comes from the aperture and thereafter emits thermal radiation to the infrared sensor.

    Abstract translation: 红外线温度计包括探头和红外传感器。 具有红外目标的探针吸收热辐射以提供基本一致的红外辐射源和用于防止红外目标的污染的孔,同时允许将热辐射传输到目标。 红外传感器被配置为感测来自红外目标的红外辐射。 红外线靶位于探头内,使其吸收来自孔的热辐射,然后向红外传感器发射热辐射。

Patent Agency Ranking