Abstract:
A sensor system employs a thermo-electrically cooled surface enhanced Raman (SERS) structure that is positioned in a sample chamber. Gas or vapor that may contain an analyte of interest is introduced into the sample chamber so that the analyte may come into contact with the SERS structure. The SERS structure may be cooled to facilitate condensation of selected analytes onto the SERS structure. When in contact with each other, the analyte and SERS structure may be optically stimulated by an optical excitation signal to produce a unique spectral response that may be detected by a spectroanalysis system. The spectral response then may be correlated to a specific analyte, i.e., identified.
Abstract:
The present invention provides miniaturized instruments for conducting chemical reactions where control of the reaction temperature is desired or required. Specifically, this invention provides chips and optical systems for performing and monitoring temperature-dependent chemical reactions. The apparatus and methods embodied in the present invention are particularly useful for high-throughput and low-cost amplification of nucleic acids.
Abstract:
An optical pH sensor and a gas sensor utilizing the pH sensor. The pH sensor includes an indicator whose absorbance is a function of the concentration of hydronium ions in a media surrounding the indicator. Light transmitted and reflected through the indicator of the sensor undergoes an absorption that is characteristic of the concentration of the hydrogen ion. The pH sensor can be used as to sense the concenration of a gas in a sample by surrounding the indicator with a liquid or liquid-containing media that changes pH as it is exposed to the gas, and separating the indicator and liquid or liquid-containing media from the gas with a membrane that is permeable to the gas to be measured. A measuring system used with the sensors transmits coherent radiation to the sensor through an optical fiber, separates the radiation returning from the sample into two wavelength bands, and digitally samples the photocurrents produced within the two wavelength bands. A microprocessor performs ratiometric calculations to measure the pH or gas concentration.
Abstract:
A beam of light falling within the range of 180 to 3,000 nanometers is transmitted through a flow cell in an optical compartment of an absorbance detector after warm up of the equipment while the eluant flows through the flow cell from a chromatographic column. The column extends upwardly from the absorbance detector into an air chamber having a volume of approximately 0.25 cubic foot formed with acrylic walls. Air flows from the absorbance detector under the power of a fan at approximately 10 cubic feet per minute upwardly through an air duct having a cross section of approximately 1.5 square inches to the top where it connects with the air chamber, the speed of the motor being adjustable until temperature varies less than one degree Celsius between the flow cell and the lower 10 centimeters of the column. Under these conditions Schlieren noise from the flow cell due to flow-induced thermo-optical effects is reduced.
Abstract:
The present technology relates to a light detection device capable of receiving light from an object to be measured without interference. The light detection device includes a Peltier element configured of a P-type semiconductor and an N-type semiconductor disposed between a first substrate and a second substrate, and a light receiving part configured to receive light from the object having been subjected to temperature modulation by the Peltier element, in which the first substrate is provided on the object side, the second substrate is provided on the light receiving part side, and at least parts of the first substrate and the second substrate are configured to transmit light from the object. The present technology can be applied to, for example, a detection device that detects a predetermined material by receiving and analyzing light from an object to be measured.
Abstract:
A method and system are presented for use in measuring one or more characteristics of patterned structures. The method comprises: performing measurements on a patterned structure by illuminating the structure with exciting light to cause Raman scattering of one or more excited regions of the pattern structure, while applying a controlled change of at least temperature condition of the patterned structure, and detecting the Raman scattering, and generating corresponding measured data indicative of a temperature dependence of the detected Raman scattering; and analyzing the measured data and generating data indicative of spatial profile of one or more properties of the patterned structure.
Abstract:
Disclosed are a system and method for active stabilization of parasitic fringes in optical spectrometers, wherein the spectrometer obtains the transmission spectrum, and a signal processor extracts the etalon drift from the spectral signatures of parasitic fringes. The disclosed approach improves spectrometer accuracy, minimizes drift, and increases time between calibrations.
Abstract:
The present invention is directed to a gas detector configured to improve response speed of a gas sensor. A gas detector includes a housing, a gas sensor main body installed in the housing, and a partition wall provided in the housing and limiting the surrounding of the gas sensor main body to separate from the other area. The housing or the partition wall includes an opening portion directly connected from the outside to an area inside the partition wall.
Abstract:
An instrument determines a concentration of bacteria in a plurality of fluid samples, and comprises a housing, a rotatable platform, a plurality of fluid containers, a light source, a sensor, and a motor. The rotatable platform is within the housing. The fluid containers are located on the rotatable platform. Each fluid container holds a corresponding one of the plurality of fluid samples, and has an input window and an output window. The light source provides an input beam for transmission into the input windows of the fluid containers and through the corresponding fluid samples. The input beam creates a forward-scatter signal associated with the concentration of bacteria. The motor rotates the rotatable platform so that the input beam sequentially passes through each fluid sample. A sensor within the housing detects the forward-scatter signal exiting from the output window associated with the fluid sample receiving the input beam.
Abstract:
A method and an apparatus are presented for monitoring a concentration of a specific halogen in a body of water such as a spa or bathing unit for example. The apparatus comprises a housing in which is positioned an optical absorption analyzer for making first and second measurement of transmission of ultraviolet light from a light source emitting light at a specific wavelength. The second and first measurements are taken respectively before and after the ultraviolet light has travelled through a sample of water and are used to derive a concentration of the specific halogen. The derived concentration may then be communicated to a user using a display device and/or may be used to control operational components of a bathing unit for adjusting the concentration of halogen in the water. In some practical implementations, the apparatus may be embodied as a standalone device, which may be configured to float on the water of the bathing unit or, alternatively, may be configured for being installed in-line in a water circulation path of the bathing input by connecting the housing to circulation piping.