Abstract:
A device for generating a laser light beam includes a module. The module includes at least one laser light source, and a mechanical, an electrical and/or an optical interface defined towards an outside of the module.
Abstract:
A multichannel fluorosensor includes an optical module and an electronic module combined in a watertight housing with an underwater connector. The fluorosensor has an integral calibrator for periodical sensitivity validation of the fluorosensor. The optical module has one or several excitation channels and one or several emission channels that use a mutual focusing system. To increase efficiency, the excitation and emission channels each have a micro-collimator made with one or more ball lenses. Each excitation channel has a light emitting diode and an optical filter. Each emission channel has a photodiode with a preamplifier and an optical filter. The electronic module connects directly to the optical module and includes a lock-in amplifier, a power supply and a controller with an A/D converter and a connector. The calibrator provides a response proportional to the excitation intensity, and matches with spectral parameter of fluorescence for the analyzed fluorescent substance.
Abstract:
Techniques are described for the detection of multiple target species in real-time PCR (polymerase chain reaction). For example, a system comprises a data acquisition device and a detection device coupled to the data acquisition device. The detection device includes a rotating disk having a plurality of process chambers having a plurality of species that emit fluorescent light at different wavelengths. The device further includes a plurality of removable optical modules. Each of the removable optical modules is optically configured to excite the species and capture fluorescent light emitted by the species at different wavelengths. A fiber optic bundle coupled to the plurality of removable optical modules conveys the fluorescent light from the optical modules to a single detector.
Abstract:
An arrangement for the detection of the fluorescence radiation of matrix-shaped specimen carriers with a large number of individual specimens, in particular, for the analysis of chemical and biological specimen carriers is disclosed. The object of the invention, to find a new possibility for detection of fluorescence radiation of matrix-shaped specimen carriers with a large number of individual specimens which permits a highly sensitive quantitative readout of the fluorescence radiation which is characteristically influenced by the individual specimen substances, is met in that, while simultaneously exciting the fluorescence radiation of a large number of substrate pixels, the transmitting optics for transmitting the fluorescence radiation emitted by individual substrate pixels to a multi-element receiver contain an imaging objective by which every substrate pixel is correlated with a determined group of receiver elements of the multi-element receiver and which is outfitted with an additional aperture stop for limiting the angular area of the recorded fluorescence radiation, so that the receiver elements which are correlated respectively with a determined substrate pixel receive substantially no fluorescent light of neighboring substrate pixels, and a darkfield illumination is provided for exciting a large number of substrate pixels with an excitation beam bundle which cuts out the aperture of the objective as well as a substantial angular area surrounding the objective aperture.
Abstract:
An apparatus capable of measuring quantities of biological or other types of samples that have been labeled using any of a variety of techniques including fluorescence, radioisotopes, enzyme activated light emitting chemicals, and enzyme activated fluorescent materials is provided. The apparatus allows for either simultaneous or sequential acquisition of signals from multiple sample types. The apparatus is not restricted to a particular source or wavelength of excitation or readout light, nor is the apparatus restricted to a particular emission wavelength. The provided scanner includes a source module that preferably contains an internal laser emitting two different wavelengths of approximately the same intensity. An optional external light source may be coupled to the source module, thus adding further flexibility through the addition of other wavelengths (e.g., V, visible, mid-IR, and IR). The scanner also includes a detection module. Within the detection module are two detectors, thus allowing the simultaneous detection of multiple wavelengths. A bifurcated optical cable is used to transfer the excitation and/or readout light from the source module to the sample and subsequently transfer the emitted and/or scattered light from the sample to the detection module. The scanning stage of the scanner is designed to accommodate a variety of samples, ranging from phosphor screens, gels, and fluorescent samples to microtiter plates. An internal microprocessor is used to control the various aspects of the scanner, preferably including translation stage control, source filters, and detection filters. The internal microprocessor may be coupled to an external computer. The external computer may be used to change the programming of the microprocessor, provide a user interface to the microprocessor, process and store test results, and display sample images.
Abstract:
A reservoir chemical sensor has a sensor body containing a reservoir cell channel around which source and detector are positioned within the cell body. A replaceable modular reservoir cell which contains sensing solution fits snugly and removably in the channel in the sensor body. Different reservoir cells can be easily inserted and removed from the sensor body.
Abstract:
A spectrometer system is disclosed in which the sample-containing chamber is a separately constructed, enclosed modular unit which is readily attachable to, and detachable from, one wall of a housing which constitutes the basic unit of the spectrometer, and which contains an interferometer, one or more detectors, and other portions of the system. Various examples of the essentially unlimited types of sampling modules are disclosed. Also, automatic sample loading and unloading devices are disclosed, which are feasible because of the modular construction. And means of loading and unloading samples without purge loss are disclosed, which are feasible because of the modular construction.
Abstract:
An infrared gas analyzer is described wherein infrared energy is directed through a sample cell from a source at one end thereof. A detector at the opposite end of the sample tube monitors infrared energy of at least one pre-selected wavelength in order to produce a signal representative of the infrared energy passing through the sample cell. The analyzer is of modular construction including a disposable sample cell, an infrared source housing, a detector housing and printed circuit boards mounting signal processing components for the analyzer. A mounting base is adapted for receiving the sample tube, housings and printed circuit boards in operating alignment and interconnection with each other, detents positively securing the components in place.
Abstract:
An analytical cell assembly comprising a base with a radiation source mounted on one end, an enclosure on the other end, and a cell proper, with cell heating means, within the enclosure. The enclosure and cell have cooperative fluid flow connections whereby the cell is modular and may be simply lifted out of the enclosure. The enclosure also includes a collimating lens assembly interposed between the cell within the enclosure and the source outside the enclosure on the base. The entire assemblage of source, enclosure and cell can be moved as a unit, making it modular, or just the cell can be moved as a module leaving the enclosure and the source in place in an instrument using the invention cell assembly.
Abstract:
A modular system for performing optical spectroscopy measurements comprising enclosed modules with ports through which optical beams may pass into and out of the modules. The modules may be joined together with the ports aligned and are interchangeable in the sense that the focal point of the optical beam directed out of any output port has the same location relative to the output port.