Abstract:
An apparatus and method continuously samples and measures the changing concentration and/or density of suspended solids in a liquid medium without electrical connections at the submerged points in the liquid. A submersible sensing head is connected by an elongate probe to an non-submersible enclosure which contains at least one light source and one light detector. The sensing head has an apertured sample chamber allowing liquid to flow freely therethrough when submerged and contains at least one light emitting lens and at least one light receiving lens aligned in the flow path. The light emitting lens is connected to the light source and the light receiving lens is connected to the light detector with fiber optic bundles extending the probe. An elongate shaft extends through the probe and into the sensing head sample chamber and has a lens wiper at its lower end. The shaft is reciprocated by a timed motor in the enclosure to move the lens wiper between the lenses to wipe them clean of debris at selective continuous or intermittent cycles. When the sensing head is submerged light is transmitted from the light source to the emitting lens through the liquid between the lenses to the receiving lens and to the light detector for determining the concentration and/or density of suspended solids in the sample liquid with no submerged electrical connections.
Abstract:
A probe, for use with a spectrophotometer, which senses the reflectance of a sample remote from the spectrophotometer. The probe includes a housing having a probe portion positionable proximate the sample, and an integrating chamber disposed within the probe housing and having a radiation input port, a sample port for passing diffused radiation to the sample and returning reflected radiation from the sample, a reference port, and an exit port to receive radiation reflected from the sample through the sample port. The probe further includes a guide for directing radiation to the radiation input port from a radiation source, and an element, responsive to the exit port and the reference port, for selectively conveying reflected radiation from the sample and the wall of the integrating chamber in the probe to the remote spectrophotometer.
Abstract:
Provided is a concentration measuring device which includes: a main pipe through which a fluid whose concentration is to be measured flows; a flow cell having a fluid passage and a light passage formed to pass through the fluid passage; a spectrometer capable of measuring absorbance for each wavelength of the source light transmitted to the flow cell and the received light receiving from the flow cell; and an optical cable connecting the flow cell and the spectrometer with each other, wherein the flow cell is separated from the main pipe to be provided separately, and a fluid pipe is connected to the flow cell, so that the fluid flows from the main pipe to the flow cell through the fluid pipe using a pitot tube.
Abstract:
A method and system for a fiber optic sensing (FOS) system. The system may include an interrogator that is marinized to be disposed on a sea floor, a fiber optic cable optically connected to the interrogator, and one or more downhole sensing fibers optically connected to the fiber optic cable. The method may include disposing the interrogator on the sea floor and connecting the interrogator to a fiber optic cable. The method may further include connecting one or more downhole sensing fibers to the fiber optic cable and taking one or more measurements using the interrogator.
Abstract:
An embodiment of a module system configured to interface with a microscope is described that comprises an input optical fiber configured to provide an excitation light beam from an external light source; dynamic alignment mirrors configured to adjust the position of the beams paths of the excitation light beam on a first plane; a coupling comprising a first end configured to engage with a complementary end, wherein the excitation light reflects off a turning mirror and travels along a beam path on a second plane through an orifice in the coupling; and an output optical fiber for delivering light from a sample to an external detector, wherein the light from the sample travels along the beam path on the second plane through the orifice in the coupling, reflects off the turning mirror and travels along one of the beam paths on the first plane to the output optical fiber.
Abstract:
It is desirable to more stably and efficiently transmit light in a housing of a light source unit. A light source unit 13, which emits a laser beam L to a light guide part 40, includes: a unit housing 13b that includes a connector receiving portion 51b detachably connected to a connector portion 51a; a light source 30 that is installed in the unit housing 13b and outputs the laser beam L; a diffusion part 80 that diffuses the laser beam L output from the light source 30; a condensing lens system 81 that condenses the laser beam L diffused by the diffusion part 80; and an optical fiber 82a that transmits the laser beam L, which is condensed by the condensing lens system 81, to the connector receiving portion 51b. The connector receiving portion 51b optically connects the optical fiber 82a to the light guide part 40.
Abstract:
An ellipsometer system with polarization state generator and polarization state analyzer components inside at least one internal environment supporting encasement, said at least one encasement being present inside said environmental chamber.
Abstract:
A spectrometer (1) comprises a light source (2), a monochromator (3) with at least one diffraction grating (4), a monochromator housing (5), an order sorting filter (7), a microplate receptacle (12) and a controller (6). The order sorting filter (7) of the spectrometer (1) comprises a substrate (23), a first optical thin film (24) and a second optical thin film (25), wherein, in a spatially partly overlapping and interference-free manner, the first optical thin film (24) is arranged on a first surface (26) and the second optical thin film (25) is arranged on a second surface (27) of the substrate (23). A spectrometer (1) equipped with a respective order sorting filter is used in a scanning method for detecting the absorption spectrum of samples examined in wells (14) of microplates (13).
Abstract:
Sensor structure (16) is provided for online monitoring of levels of Furans in oil of a transformer tank. The sensor structure includes a UV light source (26), a filter (30) permitting only UV light of a certain wavelength range to pass, a window (32) permitting the filtered UV light to passes there-through and a UV light detector (36) to receive UV light that passes through the window. When the sensor structure is mounted to the transformer tank that is online so that the window is exposed to oil, and Furans in the oil are being monitored, the Furans will absorb UV light, creating a difference in UV light received by the light detector when compared to the UV light received by the light detector when the monitored oil has no Furans therein. The output signal of the light detector is substantially proportional to a total of Furans in the monitored oil.
Abstract:
Examples of a spectroscopy probe for performing measurements of Raman spectra, reflectance spectra and fluorescence spectra are disclosed. The integrated spectral probe can comprise one or more light sources to provide a white light illumination to generate reflectance spectra, an excitation light to generate an UV/visible fluorescence spectra and a narrow band NIR excitation to induce Raman spectra. The multiple modalities of spectral measurements can be performed within 2 seconds or less. Examples of methods of operating the integrated spectroscopy probe disclosed.