Abstract:
A method for manufacturing a micromechanical structure, and a micromechanical structure. The micromechanical structure encompasses a first micromechanical functional layer, made of a first material, that comprises a buried conduit having a first end and a second end; a micromechanical sensor structure having a cap in a second micromechanical functional layer that is disposed above the first micromechanical functional layer; an edge region in the second micromechanical functional layer, such that the edge region surrounds the sensor structure and defines an inner side containing the sensor structure and an outer side facing away from the sensor structure; such that the first end is located on the outer side and the second end on the inner side.
Abstract:
A new high G-range damped acceleration sensor is proposed with a proof mass optimized for maximized, bi-directional and symmetrical damping to accommodate acceleration ranges above and beyond several thousand G's. In order to achieve the maximum, bi-directional and symmetrical damping, the high G-range acceleration sensor is designed to have minimum amount of mass in the proof mass while maximizing its surface areas. Such high G-range damped acceleration sensor can be applied to any application in which damping (or suppression of ringing) is desired at quite high frequencies.
Abstract:
In various embodiments, a microelectromechanical system may include a mass element; a substrate; a signal generator; and a fixing structure configured to fix the mass element to the substrate; wherein the mass element is fixed in such a way that, upon an acceleration of the microelectromechanical system, the mass element can be moved relative to the substrate in at least two spatial directions, and wherein a signal is generated by the movement of the mass element by means of the signal generator.
Abstract:
A resonant sensor including a support, a proof body suspended from the support and having a resonant frequency ωa, an element that measures a force including at least one resonator of resonant frequency ωrn, the force being applied by the proof body, and a mechanical decoupling structure interposed between the proof body and the resonator. The decoupling structure includes a decoupling mass, a first connecting element between the decoupling mass and the proof body, a second connecting element between the decoupling mass and the resonator, the decoupling structure having a main vibration mode whose resonant frequency ωd is such that ωa
Abstract:
A MEMS sensor package includes a MEMS sensor fixed to a vibration damping mount. The mount includes a silicon substrate defining an outer frame; a moveable support to which the MEMS sensor is fixed; and a vibration damping structure connected between the outer frame and the moveable support to damp movement of the support. The MEMS sensor and vibration damping mount are enclosed by a casing that is backfilled with gas.
Abstract:
Microelectronic structure comprising a mobile mass mechanically linked to a first and to a second mechanical element by first and second mechanical linking device respectively, a polarisation source for the second mechanical linking device. The second mechanical linking means comprises two linking elements and a thermal reservoir placed between the linking elements, where at least one of the linking elements is made of piezoresistive material, where at least one of the first and second linking elements exhibit thermoelasticity properties. The thermal reservoir exhibits a thermal capacity which is different from those of the linking elements. The second linking device and the mobile mass are arranged relative to each other such that displacement of the mobile mass applies a mechanical stress to the second linking means.
Abstract:
A device comprises a substrate, a spring structure, and a first sensor. The first sensor is resiliently coupled with the substrate via the spring structure. The spring structure is configured to provide damping of the first sensor with respect to the substrate. The device also comprises a second sensor configured to sense a deflection of the spring structure.
Abstract:
Inertial sensor comprising a fixed part and at least one mass suspended from the fixed part and means of damping the displacement of the part suspended from the fixed part, said damping means being electromechanical damping means comprising at least one DC power supply source, one electrical resistor and one variable capacitor in series, said variable capacitor being formed partly by the suspended part and partly by the fixed part such that displacement of the suspended part causes a variation of the capacitance of the variable capacitor.
Abstract:
An inertial sensor not susceptible to temperature change and vibration disturbance in an implementation environment of the inertial sensor is provided. In the present invention, for example, as illustrated in FIG. 9, an extending portion EXU is provided so as to connect to a fixing portion FU3, this extending portion EXU and a third region P3 which configures part of a mass body MS are connected via a support beam BM3 and a support beam BM4, and the support beam BM3 and the support beam BM4 are disposed oppositely with respect to a virtual line IL1. With this, natural frequency of an unwanted mode due to rotation and torsion of the mass body MS can be shifted to a high frequency band.
Abstract:
Linear accelerometer comprising a fixed part, a rotationally moving part in the plane of the accelerometer around an axis of rotation orthogonal to the plane of the accelerometer, the moving part comprising a centre of gravity distinct from the point of intersection of the axis of rotation and the plane of the accelerometer, means forming pivot link between the moving part and the fixed part, means for detecting the displacement of the moving part with respect to the fixed part, means for viscous damping the displacement of the moving part in said plane, said viscous damping means comprising interdigitated combs, at least one first comb on the moving part and at least one second comb on the fixed part (2), the first comb and the second comb being interdigitated.