Abstract:
A physical quantity sensor includes an anchor fixed to a substrate, a support beam, a fixed electrode unit, a movable body, and a damper unit. The fixed electrode unit is provided at the substrate. One end of the support beam is coupled to the anchor. The movable body includes a movable electrode unit and a frame unit. The movable electrode unit includes a movable electrode facing a fixed electrode of the fixed electrode unit. The frame unit couples the movable electrode unit and the other end of the support beam. The damper unit is coupled to the frame unit, is provided in a region surrounded by the support beam and the frame unit, and damps vibration of the frame unit in a first direction.
Abstract:
The invention relates to an acceleration sensor, comprising a substrate having a substrate surface and a sample mass that is movable relative to the substrate in a first direction (x) parallel to the substrate surface. The sample mass has a comb-like electrode that is movable together with the sample mass and has a plurality of teeth, which extend in the first direction (x). The acceleration sensor further comprises a counter-electrode fixedly connected to the substrate, which counter-electrode has a fixed comb-like electrode and wherein said fixed comb-like electrode has a plurality of teeth which extend in a direction opposite to the first direction (x). The teeth of the movable comb-like electrode engage with the teeth of the fixed comb-like electrode. The acceleration sensor further comprises a shielding electrode fixedly connected to the substrate and which is suitable for increasing a pneumatic damping of the sample mass during a deflection movement of the sample mass.
Abstract:
A vibration damper for a sensor unit comprises an elastic damping element including a central plate, a plurality of damping fingers joined at a first end to the central plate, and a plurality of fastening surfaces. At least two fastening surfaces of the plurality of fastening surfaces are disposed at a distance from each other in a first spatial direction. The damping element is flexurally elastically soft along the first spatial direction and is formed with a higher stiffness in a main extension plane defined perpendicular to the first spatial direction. A layer of adhesive is applied to each of the at least two fastening surfaces which are configured to be subjected to shear stress as a result of vibrations in the main extension plane.
Abstract:
A damping device for a micromechanical sensor device, having at least one first intermediate layer having at least two sections, a second section being situated around a first section, a lateral distance being provided between the first and the second section, and an elastic device being provided between the first section and the second section as an integral part of the first intermediate layer.
Abstract:
Apparatus and methods for interfacing with a micro-electromechanical system (MEMS) sensor are provided. In an example, an apparatus can interface circuit including an integrator circuit, a sample switch circuit, a saturation detector and a controller. The saturation detector can be configured to receive a signal indicative of an integration of charge of the sensor, to compare the signal indicative of the integration of charge to an integrator saturation threshold and to modulate a divide parameter using the comparison of the signal indicative of the integration of charge and the integrator saturation threshold. The controller can be configured to receive a clock signal and to control the sample switch circuit based on a phase of the clock signal and the divide parameter.
Abstract:
A capacitance type physical quantity sensor including a movable electrode formed in a weight part, and a fixed electrode facing the movable electrode is provided. A first movable sensing electrode and a first fixed sensing electrode face each other in a first y direction. A second movable sensing electrode and a second fixed sensing electrode face each other in a second y direction. A first movable damping electrode is located in the middle between two first fixed damping electrodes, faces one of the first fixed damping electrodes in the first y direction and faces the other of the first fixed damping electrodes in the second y direction. A plurality of the first movable damping electrodes are located point-symmetrically with respect to the center of the weight part or line-symmetrically with respect to a center line passing the center in the y direction.
Abstract:
Inertial sensor comprising a fixed part and at least one mass suspended from the fixed part and means of damping the displacement of the part suspended from the fixed part, said damping means being electromechanical damping means comprising at least one DC power supply source, one electrical resistor and one variable capacitor in series, said variable capacitor being formed partly by the suspended part and partly by the fixed part such that displacement of the suspended part causes a variation of the capacitance of the variable capacitor.
Abstract:
A physical quantity sensor includes: a substrate; a movable body including, with a first axis as a boundary, a first movable electrode portion disposed in a first region, a second movable electrode portion disposed in a second region, and a damping adjusting portion disposed in at least one of the first region and the second region; beam portions supporting the movable body; a first fixed electrode portion; and a second fixed electrode portion. A first through-hole is disposed in the damping adjusting portion. Second through-holes are disposed in the movable electrode portions. The area of a region where the first movable electrode portion overlaps with the first fixed electrode portion is the same as the area of a region where the second movable electrode portion overlaps with the second fixed electrode portion. The width of the first through-hole is greater than the widths of the second through-holes.
Abstract:
The MEMS device is formed by a substrate and a movable structure suspended on the substrate. The movable structure has a first mass, a second mass and a first elastic group mechanically coupled between the first and the second masses. The first elastic group is compliant along a first direction. The first mass is configured to move with respect to the substrate along the first direction. The MEMS device also has a second elastic group mechanically coupled between the substrate and the movable structure and compliant along the first direction; and an anchoring control structure fixed to the substrate, capacitively coupled to the second mass and configured to exert an electrostatic force on the second mass along the first direction. The anchoring control structure controls the MEMS device in a first operating state, wherein the second mass is free to move with respect to the substrate along the first direction, and in a second operating state, wherein the anchoring control structure applies a pull-in force on the second mass which anchors the second mass to the anchoring structure.
Abstract:
A vibration sensor having a moveable mass being suspended in a suspension member and being adapted to move in response to vibrations or accelerations. The moveable mass and the suspension member are rigidly connected across one or more gaps formed by respective opposing surfaces of the moveable mass and the suspension member. The vibration sensor includes a damping arrangement having a damping substance. The moveable mass is arranged to interact directly or indirectly with the damping substance in order to reduce a mechanical resonance peak of the vibration sensor.