Abstract:
A low thermally conductive columbium metal stem has a heavy refractory metal x-ray target disk fastened to one end. A high thermal conductivity rotor hub comprising a cup-shaped element is fastened to the other end of the stem and the rotor hub is fastened to the end of an induction motor cylinder or liner which is coated to enhance heat emission and is induced to rotate by being coupled to a rotating magnetic field. A low thermally conductive bearing hub is fastened to the inside of the rotor hub and to a shaft which is journaled for rotation in bearings. The bearing hub enhances thermal isolation of the bearings from the hot rotor hub and hot target.
Abstract:
The present invention relates to mounting of an anode disk. In order to provide a mount of an anode disk to a rotating shaft that is suitable for increased thermal loads on the anode disk, a rotating anode assembly (10) is provided that comprises an anode disk (12), a rotating shaft (14), and an anode disk support (16). The anode disk is concentrically mounted to a rotating axis (18) of the rotating shaft via the anode disk support, and the anode disk support comprises a first support (20) with a first circular axial support surface (22) that is provided at the rotating shaft in a concentric manner with the rotating axis. Further, the anode disk support comprises a second support (24) with a second axial support surface (26) that is at least temporarily attached to the rotating shaft for urging the anode disk against the first support surface in an axial clamping direction. Still further, the first support is provided as a radially flexible support (28). Upon heating up of the anode disk during X-ray generation, and a thermal expansion of the anode disk, the radially flexible support bends (32) radially such that the first axial support surface at least partly follows the thermal expansion in a radial direction.
Abstract:
An x-ray tube includes a vacuum enclosure, a shaft having a first end and a second end, a flange attached to the first end of the shaft, the flange having an outer perimeter, and a ferrofluid seal assembly having an inner bore, the inner bore having an outer perimeter smaller than the outer perimeter of the flange. The shaft is inserted through the bore of the ferrofluid seal assembly such that the ferrofluid seal assembly is positioned between the first end of the shaft and the second end of the shaft and such that the first end extends into the vacuum enclosure, and the ferrofluid seal is configured to fluidically seal the vacuum enclosure from an environment into which the second end of the shaft extends.
Abstract:
An X-ray tube target assembly and method of manufacturing same is provided. The X-ray tube target assembly comprises an injection molded target disk. The injection molded target disk includes an injection molded hub member and an injection molded outer member. The injection molded outer member comprises a plurality of injection molded outer member segments that are removably attached together and removably attached to the hub member to form the injection molded target disk. A target track is formed on an outer surface on one side of an outer periphery of the injection molded outer member.
Abstract:
An x-ray target assembly is provided comprising a center hub element affixed to a drive shaft and an outer disc including a plurality of tab extensions removably engaging the periphery of the center hub element. A target element is mounted on an upper outer disc surface.
Abstract:
A high-capacity x-ray tube particularly for use in medical technology in CT apparatuses, has a vacuum housing containing a cathode and a rotatably mounted anode. The anode plate of the anode is connected by a solder connection to the one end of a load-bearing part, the other end of which is attached to the bearing shaft of a drive for placing the anode in rotation. The mechanical strength of the connection location between the anode plate and the load-bearing part is improved by the connection being formed by a positive fit, designed such that the connection surfaces are subjected substantially only to compression given rotation of the anode.
Abstract:
A new method for forming a joint between a molybdenum-based alloy structure and a structure formed from a more ductile alloy is disclosed. The method involves the solid-state bonding of the two structures, which can be carried out by a variety of techniques, such as inertia-welding or explosive-welding. The molybdenum-based alloy may be a TZM-type material, while the more ductile alloy may be tantalum-based, niobium-based, or nickel-based, for example. This method is especially useful in the manufacture of x-ray devices, such as those which include rotary anode assemblies. As one illustration, the method can be used to provide a very strong joint between a target formed from a molybdenum alloy and an insert formed from a tantalum alloy. Related x-ray assemblies are also described.
Abstract:
A method for assembling a rotating X-ray tube structure ensures balance retention during the life of the tube. The X-ray tube structure has a cathode for emitting electrons, and a rotor and a bearing assembly for facilitating rotation of an anode. At least one joint is identified in the X-ray tube structure and interference fit assembly is used to eliminate shifts at the joint. The interference fit assembly is particularly advantageous for eliminating even the minutest shifts in the main joints of the anode assembly. Interference fit assembly can be applied between the rotor and the anode target to provide a first joint having balance retention; and interference fit assembly can be applied between the bearing assembly and the rotor to provide a second joint having balance retention.
Abstract:
Methods of making an improved high performance x-ray system having a rotating anode therein are available. The anode includes an improved target/stem connection which reduces tube failure due to anode assembly imbalance. Methods of bonding a metallic target and a metal stem to form a composite rotating x-ray tube target are also available. In these procedures an insert of an alloy, for example, tantalum or its alloys , is placed between the target and the niobium-alloy stem and then bonded thereto to produce a composite x-ray tube target/stem having a high remelt temperature and bond strength which retains its balance throughout the manufacturing process and during x-ray tube operations.
Abstract:
A method of making a high performance x-ray system having a rotating anode includes making target/tubular stem assembly and then assembling it to a rotor body assembly. This particular method reduces tube failure due to anode assembly imbalance and provides an improved rotating x-ray tube anode assembly.