Abstract:
A magnetic shield with which a high magnetic field suppression effect is realized in a restricted space and a charged particle radiation apparatus using the magnetic shield are described below. To achieve the above-described object, a scanning electron microscope wherein a shield for shielding against an external magnetic field is formed of a plurality of plate portions made of a magnetic material, the plate portions being disposed on the circumference of a circle whose center corresponds to a center of the space so that each plate portion has a surface direction set different from a line tangent to the circle, is proposed (see FIG. 1).
Abstract:
A focused ion beam apparatus and a focused ion beam irradiation method are disclosed. Even in the case where a magnetic field exists on the optical axis of an ion beam and the particular magnetic field undergoes a change, the ion beam is focused without separating the isotopes on the sample at the same ion beam spot position as if the magnetic field is not existent. A canceling magnetic field is generated on the optical axis of the ion beam from a canceling magnetic field generator thereby to offset the deflection of the ion beam due to the external magnetic field.
Abstract:
A focused ion beam apparatus and a focused ion beam irradiation method are disclosed. Even in the case where a magnetic field exists on the optical axis of an ion beam and the particular magnetic field undergoes a change, the ion beam is focused without separating the isotopes on the sample at the same ion beam spot position as if the magnetic field is not existent. A canceling magnetic field is generated on the optical axis of the ion beam from a canceling magnetic field generator thereby to offset the deflection of the ion beam due to the external magnetic field.
Abstract:
CPB microlithography systems are disclosed that effectively cancel the effects of floating external magnetic fields and that exhibit a high magnetic shielding ratio using small components. An exemplary system includes a search coil situated and configured to detect external magnetic field, and a compensation coil situated and configured to produce a magnetic field that, based on the detected magnetic field, cancels the external magnetic field. These coils desirably are situated downstream of an illumination lens. The external magnetic field detected by the search coil is converted to a corresponding electrical signal by an external-magnetic-field-detection circuit and routed to an external-magnetic-field-compensation circuit to which the compensation coil is connected. The external-magnetic-field-compensation circuit cancels the external magnetic field by providing an electrical current, corresponding to the detected external magnetic field, to the compensation coil. A search coil and compensation coil also can be provided in a similar manner downstream of a second projection lens, and provided with a respective external-magnetic-field-detection circuit and external-magnetic-field-compensation circuit.
Abstract:
A magnetic shunt assembly (12) for an exposure apparatus (10) includes a magnetic shunt assembly (12). The apparatus (10) includes an optical assembly (24)(26), a stage (44), a first mover assembly (16) that moves the stage (44) in a first gap (37). The first mover assembly (16) is surrounded by a magnetic field. The magnetic shunt assembly (12) is positioned near the optical assembly (24)(26) approximately between the optical assembly (24)(26) and the mover assembly (16). The magnetic shunt assembly (12) is made of a material having a relatively high magnetic permeability. The magnetic shunt assembly (12) can provide a low magnetic reluctance path that redirects at least a portion of the magnetic field from the first mover assembly (16) away from the gap (37).
Abstract:
Charged-particle-beam microlithographic exposure apparatus are disclosed that effectively block adverse effects of magnetic fields on the trajectory of the charged particle beam. An exemplary apparatus includes an illumination-optical system and a projection-optical system each contained in a respective vacuum chamber. The apparatus includes at least one magnetic shield structure comprising a superconducting material. A multilayer magnetic shield (including a ferromagnetic body and an electrically conductive body) can be situated outside the magnetic shield structure, with a defined gap therebetween. Such a shield structure can be located, e.g., adjacent a beam-trajectory region in an illumination-optical system between a beam deflector and the reticle, in association with a vacuum chamber of the apparatus, and/or in association with an electromagnetic actuator (e.g., linear motor used to actuate a stage device).
Abstract:
The high voltage electrostatic accelerator of this invention has spark arrester rings which form magnetic shield elements around an acceleration tube and which together with mu-metal rings between accelerator segments shield the electrons being accelerated from stray static and dynamic magnetic fields. The spark arresters surround the accelerating electrodes. The rings between accelerator segments are formed of mu-metal, an alloy of nickel designed for its magnetic shielding properties and consisting of 77 percent nickel, 4.8 percent copper, 1.5 percent chrome and 14.9 percent iron. The mu-metal spark arresters together with the rings between accelerators segments provide an effective magnetic shield in a cost-effective manner. Because mu-metal has a high permeability, magnetic field lines tend to travel about the Mu-metal rings rather than pass through the acceleration tube, where they would influence electrons being accelerated. The discontinuous nature of the shield allows it to be super-positioned as an integral part of the spark arresters positioned about the accelerating electrodes.
Abstract:
An information recording apparatus including a device for driving an optical-disk's master disk, an electron lens barrel for having an electron beam irradiate a recording surface of a disk, a translational device for producing, between the disk and the electron lens barrel, a relative movement in a direction parallel to the recording surface and a container for enclosing the elements of the apparatus adapted to support a vacuum atmosphere. The driving device includes a turn table 4, a spindle 14a for supporting the turn table, a motor 14 for driving the spindle, and a magnetic shield for preventing magnetic fields of the motor from leaking outward. The motor is enclosed in the shield to prevent its magnetic fields from affecting the electron beam, which makes it possible to record information with high accuracy. The use of the motor as a drive source realizes easier and more responsive control of the turn table than that in the prior art.
Abstract:
Embodiments of the present disclosure include an apparatus and methods for the plasma processing of a substrate. Some embodiments are directed to a plasma processing chamber. The plasma processing chamber generally includes a planar coil region comprising a concentric coil region comprising a first concentric coil and a second concentric coil, and a power supply circuit coupled to the first concentric coil and the second concentric coil. The first concentric coil may include a first coil with a diameter measured in a direction parallel to a first plane that is smaller than the diameter of a second coil included in the second concentric coil. The power supply circuit may be configured to bias the first concentric coil and the second concentric coil to adjust a generated magnetic field in a region of control of a plasma in the plasma processing chamber to control a plasma density of the plasma.
Abstract:
A lens element of a charged particle system comprises an electrode having a central opening. The lens element is configured for functionally cooperating with an aperture array that is located directly adjacent said electrode, wherein the aperture array is configured for blocking part of a charged particle beam passing through the central opening of said electrode. The electrode is configured to operate at a first electric potential and the aperture array is configured to operate at a second electric potential different from the first electric potential. The electrode and the aperture array together form an aberration correcting lens.