Abstract:
The disclosed subject matter includes a fluorescent lamp and particularly a cold cathode fluorescent lamp that can be employed as a light source for a LCD backlight unit for a television, a computer, a display, and the like. The fluorescent lamp can include a couple of electrode units located opposite to each other at each end of a tube, a couple of welding beads sealing both the tube and the couple of electrode units, and a filler gas located in the tube. Each of the electrode units can include an emitter electrode that is configured with a crystalline silicon semiconductor material having an electrical conductivity or configured with other semiconductor materials, and can include a concave portion formed thereon. The electrode units can prevent blackening on an inner surface of the tube by avoiding the occurrence of spattering. Thus, the fluorescent lamp using the electrode units can enjoy a long life, high reliability, easy manufacture, and the like.
Abstract:
This cold cathode tube lamp comprises a glass tube (11) into which at least a rare gas is filled, a pair of first electrodes (21, 22) disposed to face each other at both inner end portions of the glass tube (11) and composed of cylinder-shaped first cylindrical portions (21a, 22a) with openings at one ends and first bottom portions (21b, 22b) closing the other ends of the first cylindrical portions (21a, 22a), and second electrodes (41, 42) provided in the respective first electrodes (21, 22). The second electrodes (41, 42) include at least cylinder-shaped second cylindrical portions (41a, 42a) with openings at each one end thereof. The second electrodes (41, 42) are disposed such that the second cylindrical portions (41a, 42a) are a predetermined distance away from the respective first cylindrical portions (21a, 22a) of the first electrodes (21, 22).
Abstract:
There are provided electrode emission source components (105) and electrical apparatus comprising the same. In one embodiment an electrode emission source component comprises a tubular metal body (107) having first and second open ends (140, 150). Also provided are methods of forming electrode components.
Abstract:
A cold-cathode fluorescent lamp including a glass bulb, a pair of hollow electrodes, and a pair of electrically connected terminals. The hollow electrodes each include an electrode body and a lead wire. The hollow electrodes are hermetically connected to the glass bulb at both ends of the glass bulb. The pair of electrically connected terminals are thin coats that are, except for connection portions connected to lead wires, provided on an outer surface of the glass bulb at both ends of the glass bulb.
Abstract:
A method for fabricating microcavity discharge devices and arrays of devices. The devices are fabricated by layering a dielectric on a first conducting layer. A second conducting layer or structure is overlaid on the dielectric layer. In some devices, a microcavity is created that penetrates the second conducting layer or structure and the dielectric layer. In other devices, the microcavity penetrates to the first conducting layer. The second conducting layer or structure together with the inside face of the microcavity is overlaid with a second dielectric layer. The microcavities are then filled with a discharge gas. When a time-varying potential of the appropriate magnitude is applied between the conductors, a microplasma discharge is generated in the microcavity. These devices can exhibit extended lifetimes since the conductors are encapsulated, shielding the conductors from degradation due to exposure to the plasma. Some of the devices are flexible and the dielectric can be chosen to act as a mirror.
Abstract:
The disclosed subject matter includes a fluorescent lamp and particularly a cold cathode fluorescent lamp that can be employed as a light source for a LCD backlight unit for a television, a computer, a display, and the like. The fluorescent lamp can include a couple of electrode units located opposite to each other at each end of a tube, a couple of welding beads sealing both the tube and the couple of electrode units, and a filler gas located in the tube. Each of the electrode units can include an emitter electrode that is configured with a crystalline silicon semiconductor material having an electrical conductivity or configured with other semiconductor materials, and can include a concave portion formed thereon. The electrode units can prevent blackening on an inner surface of the tube by avoiding the occurrence of spattering. Thus, the fluorescent lamp using the electrode units can enjoy a long life, high reliability, easy manufacture, and the like.
Abstract:
A microdischarge device has a semiconductor layer, an intermediate layer, and a conductive layer. A tapered cavity is disposed in at least the semiconductor layer.
Abstract:
A microcavity discharge device generates radiation with wavelengths in the range of from 11 to 14 nanometers. The device has a semiconductor plug, a dielectric layer, and an anode layer. A microcavity extends completely through the anode and dielectric layers and partially into the semiconductor plug. According to one aspect of the invention, a substrate layer has an aperture aligned with the microcavity. The microcavity is filled with a discharge gas under pressure which is excited by a combination of constant DC current and a pulsed current to produce radiation of the desired wavelength. The radiation is emitted through the base of the microcavity. A second embodiment has a metal layer which transmits radiation with wavelengths in the range of from 11 to 12 nanometers, and which excludes longer wavelengths from the emitted beam.
Abstract:
A cold-cathode fluorescent lamp, comprising a sealed lighting enclosure provided with a phosphor coating on at least part of an inner surface thereof the lighting enclosure. An electrode is provided juxtaposed a region of the inner surface of the lighting tube, the electrode energisable from an external source of energy via an electric lead supporting the electrode, and positioned adjacent the main ionisation region within the lighting enclosure. The phosphor is to be excited by radiation to be generated inside the lighting tube by electric discharge from the electrode to provide visible radiation. At least part of the surface(s) of that portion of the electrode proximal most to the ionisation region are overlaid by a cap made from a high heat resistive and non conductive material.
Abstract:
A hollow cathode having at least a portion of the inner, outer or both surfaces coated with a layer of a getter material is described. Some methods for the production of the hollow cathode of the invention are also described, which include cathodic and electrophoretic deposition of the getter layer onto the hollow cathode.