Abstract:
A plasma treatment apparatus for a workpiece includes a metal electrode, a capillary dielectric having first and second sides and coupled to the metal electrode through the first side, wherein the capillary dielectric has at least one capillary, a shield body surrounding the metal electrode and the first side of the capillary dielectric, wherein the shield body has first and second end portions, and a gas supplier providing gas to the metal electrode.
Abstract:
A method for inhibiting the leaching of mercury from a mercury vapor discharge lamp having a diameter of less than 1.5 inches wherein at least a part of the mercury is present as ionic mercury includes depositing a coating of SnO2 on an interior surface of the lamp envelope. Further included within the lamp is a quantity of oxidizable iron in an amount equal to at least 1 gram per kilogram of lamp weight.
Abstract:
An apparatus for cathodic arc coating. The apparatus includes: a vacuum chamber which includes an anode; a power supply; and a cathode target assembly connected to the power supply. The cathode target assembly includes a cathode target and a target holder. In the preferred embodiment, a conductive interlayer is located between the cathode target and the target holder, and a cooling block is in contact with the cathode target.
Abstract:
A method for inhibiting the leaching of mercury from a mercury vapor discharge lamp wherein at least a part of the mercury is present as ionic mercury includes depositing a coating of SnO2 on an interior surface of the lamp envelope. The SnO2 coating is substantially free of a substance which would cause electrical conductity of the coating. Further included within the lamp is a quantity of oxidizable iron in an amount equal to at least 1 gram per kilogram of lap weight.
Abstract:
A high-frequency electron source includes a discharge chamber having at least one gas inlet for a gas to be ionized and at least one extraction opening for electrons. The high-frequency electron source also includes a first electrode at least partially surrounding the discharge chamber and a keeper electrode at least partially surround the discharge chamber. The first electrode and the keeper electrode are configured to provide a high-frequency electric field therebetween.
Abstract:
The invention provides an ion source, including an inlet port for introduction of a sample into the ion source; an outlet port through which an ion beam exits; an ionizer for ionizing the sample; an ion formation chamber confined by an ion cage, and at least one electrical shield for shielding the ion chamber from the penetration of electrical fields affecting the ions inside the chamber.
Abstract:
A method and apparatus for preventing the formation of leachable mercury in mercury arc vapor discharge lamps is provided which comprises coating at least one of the metallic components of the mercury arc vapor discharge lamps with at least one noble metal coating.
Abstract:
A device for retaining a mercury source in the discharge space of a low-pressure discharge lamp is disclosed. The mercury source retaining device comprises a holder, which has an inner space communicating with the discharge space and a receiver opening for receiving a mercury source. The retaining device further comprises resilient clamping means for clamping the holder in a tubular space segment of the discharge space and resilient retaining means at least partially blocking the receiver opening. The resilient retaining means are adapted for allowing a passage of the mercury source in a direction towards the inner space of the holder, but block the movement of the mercury source through the receiver opening in a direction out of the holder.
Abstract:
This invention provides a processing device allowing a plurality of types of processing including electron beam processing to be carried out on a substance disposed in a processing chamber, and processing methods that use such a processing device and allow prescribed processing to be carried out in an advantageous way, the processing device has a processing chamber provided with a support member, an electron beam source provided in the processing chamber and emits an electron beam toward the substance supported by the support member, and an emission gas supply system provided in the processing chamber and supplies an emission gas that emits UV light upon being subjected to an electron beam, moreover, a low pressure system that reduces the pressure in the processing chamber and a process gas supply system that supplies a process gas are preferably provided in the processing chamber, and in the processing methods, such a processing device is used, and by adjusting the pressure in the processing chamber, electron beam processing, UV processing and specific processing using the process gas can be carried out either separately or simultaneously.
Abstract:
A lamp can be built with a collection that includes an electrode adapted to sustain bombardment from a stream of charged particles during an assembly process. The collection includes a metallic electrode shell attached to a supporting electrical lead. A tubular glass body encircling the shell has a rear tube extending away from the shell. The electrical lead is mounted in the glass body. A glass capsule is adapted to fit in the rear tube. The capsule has therein a conductive member that can be confined to the rear tube. The conductive member can be heated in order to open the glass capsule. The capsule contains a substance for delivering mercury upon opening of the capsule. The capsule is locatable in the rear tube at an offset distance from the metallic shell in order to avoid premature mercury delivery during bombardment of the metallic shell during the assembly process. One end of the rear tube can be sealed with the capsule loaded therein. After bombardment the capsule is heated to produce mercury that migrates toward the electrode. The rear tube may then be severed and sealed at a location adjacent the carrier to either excise the capsule or leave it in the rear tube close to the electrode.