Abstract:
The present invention discloses a data transmission method and device. The method includes: receiving, by a device in a first BSS, a data frame sent by a device in a second BSS, where the data frame sent by the device in the second BSS includes a Preamble sequence and a MAC frame; transmit power of the Preamble sequence is first power; transmit power of the MAC frame is second power; and the first power is higher than the second power; if the data frame received by the device in the first BSS includes the Preamble sequence but does not include the MAC frame, setting a NAV value according to a SIG field in the Preamble sequence; and transmitting data according to the NAV value.
Abstract:
In a wireless network, a first wireless device may send a first frame instructing a second wireless device to suspend a block acknowledgement session while the first wireless device is facilitating a Bluetooth operation. When the Bluetooth operation is complete, the first wireless device may send a second frame instructing the second wireless device to resume the block acknowledgement session.
Abstract:
A method is provides in a receiving node for handling status information of data units transmitted from a sending node to the receiving node over a radio link. The receiving node establishes (401) that a number of data units that has been transmitted by the sending node are missing. The receiving node sends (402) a reduced status message to the sending node over the radio link, which message is reduced such that it comprises the negative acknowledgement for a first part of missing data units and omits negative acknowledgements for the rest of the missing data units. The omitted negative acknowledgement for the rest of the missing data units will not erroneously be interpreted as correctly received data units by the sending node.
Abstract:
Various methods and devices are provided to address the need for improved multicast operation. In one method, a feedback mobile device receives (301), from a multicast sender, a multicast transmission for a plurality of mobile devices, the plurality of mobile devices further including a group of non-feedback mobile devices. The feedback mobile device transmits (302) an indication of feedback mobile channel quality observed by the feedback mobile device to the multicast sender and to the group of non-feedback mobile devices. The feedback mobile device receives (303) from at least one non-feedback mobile device, an indication of non-feedback mobile channel quality at the at least one non-feedback mobile device and transmits (304) an indication of the non-feedback mobile channel quality to the multicast sender and to the group of non-feedback mobile devices.
Abstract:
Disclosed in some examples is a method for providing a HARQ response in an LTE network for a PUCCH format 1b. The method includes receiving one or more downlink assignments of a bundling window over a wireless downlink control channel; setting a reception status for each sub-frame of a downlink data channel in the bundling window based on whether the sub-frame on the downlink data channel was associated with a particular one of the received downlink assignments and based upon whether the sub-frame was successfully received; setting a reception status of sub-frames of the downlink data channel in the bundling window that did not have a corresponding downlink assignment to a predetermined value; and transmitting a response, the response based upon the reception statuses set by the response module.
Abstract:
Rather than using a large number of transceivers (transmitter/receiver pairs) operating in parallel, Access Points with multiple channels are used to aggregate, or stack, transmitted response communications, e.g., transmitting multiple acknowledgements (ACKs) in a single packet to one or more sources of received packets. The method includes sending on a plurality of channels, by each of a plurality of respective first nodes, a communication to a second node, receiving on the plurality of channels, by the second node, the communication from each of the plurality of first nodes and sending, by the second node, a transmission that contains a response to each communication that was successfully received from each of the plurality of first nodes. The response to each of the plurality of first nodes is part of a single message sent by the second node.
Abstract:
A method and system for large data transfer between a sender and a receiver. The sender transmits to the receiver a plurality of data packets in sequence. The time elapsed for each of the plurality of data packets after transmission of said each of the plurality of data packets is determined. The receiver transmits a message from the receiver to the sender notifying the sender that an identified one of the plurality of the data packets is missing. The sender retransmits to the receiver the identified one of the plurality of data packets only when the elapsed time determined for the identified one of the plurality of the data packets is greater than a predetermined time interval.
Abstract:
Various aspects of the disclosure described herein provide for optimizing rate control during a selection of a communications profile from a set of communications profiles by taking into account effective frame aggregation size as a function of packet error rate (PER). An expected throughput may also be determined for each communications profile and updated after each transmission so that a communications profile having the highest expected throughput may be chosen for a particular frame transmission.
Abstract:
A method of sending status information (STATUS PDU) in which a receiving side reports a data received state to a transmitting side in a mobile telecommunication system. A receiving side radio link control (RLC) entity considers an available radio resource to construct a status PDU fit to a size of the available radio resource and then sends the constructed status PDU to a transmitting side RLC entity, thereby avoiding a deadlock situation of RLC protocols.
Abstract:
A method for multicasting a packet begins by providing a buffer for each of two user equipments (UEs) in communication with a base station. A determination is made whether there is a previously unsent packet at the base station. A second determination is made whether both UE buffers are non-empty. A non-empty buffer is flushed if there is no previously unsent packet and if one of the buffers is non-empty. A packet is selected to be transmitted if there is a previously unsent packet or if both buffers are non-empty. The buffers are updated based on feedback received from the UEs.