Abstract:
The invention relates to a method of receiving digital data transmitted on a coded serial digital transmission modulated on a noisy channel with non-stationary equalization attenuation. Digital data are stored associating a value of quality of transmission with the information elements received, and a mutual information value Ik is computed for each value of the quality of transmission. The value of quality of transmission consists of an equivalent signal/noise plus interference ratio calculated as a function of the method of equalization on the basis of various signal/channel noise ratio values measured for the various temporal symbols of information elements received of the signal received corresponding to one and the same information element and according to interference due to the waveform.
Abstract:
Data is received characterizing a first signal and a second signal. The first signal and a function of the second signal is compared at a plurality of time-shifts to estimate a time-difference between the first signal and the second signal. The function of the second signal includes the second signal, a complex conjugate of the second signal, and a constant. The comparison is provided. At least one of receiving, comparing, and providing is performed by at least one processor of at least one computing system.
Abstract:
A wireless transfer device (100) is provided with: a transfer band control unit (13) for deciding upon a transfer band, on the basis of the result of a comparison of communication quality information pertaining to wireless communication, and a predetermined band control threshold value; a modulation scheme control unit (14) for deciding on a modulation scheme, on the basis of the result of a comparison of communication quality information and a predetermined modulation control threshold value; a transmission process unit (11) for controlling the transfer band for packet signals on the basis of the transfer band decided upon by the transfer band control unit (13), and outputting packet signals; and a wireless transceiver unit (12), for performing a modulation process on the packet signals output by the transmission process unit (11), doing so on the basis of the modulation scheme decided upon by the modulation scheme control unit (14). The band control threshold value and the modulation control threshold value are different values. In so doing, loss of high-priority packet signals, as well as transient fluctuations of transfer delay time, are avoided.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). Provided is a method of transmitting signals in an FBMC/OQAM system. Data symbols transmitted in category-2 data symbols or category-3 data symbols are determined according to interference from all of adjacent OQAM data symbols and an intrinsic interference coefficient of category-2 data symbols interference experienced by category-3 data symbols in a user data block, so that transmission symbols in the category-3 data symbols composed of transmitted data symbols and interference include target data symbols of the category-3 data symbols and target data symbols of the category-2 data symbols. A transmitting device transmits the data symbols of the category-3 data symbols and data symbols transmitted in category-2 data symbols together with other data symbols in the user data block.
Abstract:
A method and system for configuring one or both of a transmitter pulse-shaping filter and a receiver pulse-shaping filter to generate a total partial response that incorporates a predetermined amount of inter-symbol interference (ISI), based on one or more defined performance-related variables and one or more set constraints that are applicable to one or both of the transmitter pulse-shaping filter and the receiver pulse-shaping filters. The predetermined amount of ISI is determined based on an estimation process during extraction of data from an output of the receiver pulse-shaping filter, such that performance of total partial response based communication matches or surpasses performance of communication incorporating filtering based on no or near-zero ISI. The configuring may comprise determining optimized filtering configuration, by applying an optimization process which is based on, at least in part, the one or more constraints and the one or more performance-related variables.
Abstract:
Methods and systems are provided for simple cable phone and internet (SCPI) device that may be coupled with a cable modem (CM) and one or more SCPI head ends, e.g., via an SCPI access point. The CM may be capable of communicating a first modulated signal with a cable modem termination system (CMTS), via the SCPI device. The SCPI device may be capable of combining a second modulated signal to the first modulated signal thereby generating a combined signal. The SCPI device may be capable of sending the combined signal comprising the first modulated signal and the second modulated signal to the CMTS and an SCPI head end. The SCPI head end may be capable of processing the combined signal and extract information and/or data associated with a service. The SCPI head end may deliver the extracted information and/or data to an appropriate gateway.
Abstract:
A method of rejecting impulsive noise in an OFDM receiver is described. The impulsive noise is rejected using channel state information (CSI) and is performed in the frequency domain. A noise power estimate (furthermore referred to as a noise value) is measured for a single OFDM symbol and compared to a threshold value, which may be generated based on a short-term average of OFDM symbols not corrupted by impulsive noise or predicted based on a small number of previously measured OFDM symbols not corrupted by impulsive noise. If the noise estimate for the particular OFDM symbol exceeds the threshold value, the CSI for that symbol is derated (i.e. modified) to reduce the influence of the information from this symbol on the decoding process.
Abstract:
Detecting a leak of an OFDM signal from an HFC network, where the HFC network extends over a network area. The OFDM signal includes a first continuous pilot subcarrier having a first harmonic. The first harmonic is defined by a pre-determined first frequency. The method or apparatus comprises the steps of or means for: (a) moving a leakage detector through the network area; (b) tuning the leakage detector to receive the first harmonic of the OFDM signal, based on the pre-determined first frequency of the first harmonic; (c) with the leakage detector, receiving over-the-air, at a received first frequency, the first harmonic of the OFDM signal leaked from the HFC network; and (d) with the leakage detector, detecting the first harmonic received in step (c), whereby the leak of the OFDM signal is detected based on the detection of the first harmonic.
Abstract:
A method and apparatus for low power timing recovery is provided. In an embodiment, different gains are used to estimate timing errors during different portions of the data packet. In an embodiment, timing errors are only estimated during known sequences of a data packet. In further embodiments, errors are initially estimated independently in a first portion of the data packet in order to determine a phase shift between the errors. In the second portion of the data packet, the total error is derived from one estimated error and the phase shift between the errors.
Abstract:
Logic may determine phase correction information from pilot tones. Logic may determine phase correction information from some of the pilot locations. Logic may process the shifting pilot tones for less than all of the pilot tones. Logic may process pilot tones at any location within orthogonal frequency division multiplexing (OFDM) packet. Logic may determine to process only pilot tones at the even or odd symbol indices or subcarriers. And logic may transmit a packet with a frame with a capabilities information field comprising an indication that a receiver may can process shifting pilot tones for phase tracking.