Abstract:
A light source section of the image reading apparatus illuminates a document with light. An image sensor outputs image signals. An operating section accepts input of an enlargement factor and selection of a document scanning mode. An image processing section generates image data, from pixels (lines) in a quantity according to an enlargement factor. A stepper motor moves the document or the light source section. During a quiet mode, a signal generating section inputs to the stepper motor a pulse signal of a fixed frequency within a quiet mode frequency band. The quiet mode frequency band is a frequency band in which vibration of the stepper motor is at or below a predetermined normal vibration level.
Abstract:
An image reading apparatus may include a main unit and a cover unit pivotally attached to the main unit. The cover unit may include an image reading device configured to read an image of a document along a conveying path. The image reading device may include a contact image sensor, a sensor holder to hold the contact image sensor, an urging member, and a shock absorber. The contact image sensor is disposed below the conveying path. The sensor holder has an open top boxed shape and holds the contact image sensor in position inside. The urging member is disposed in an inner bottom surface of the sensor holder to urge the contact image sensor toward the conveying path. The shock absorber is disposed between a bottom surface of the contact image sensor and the inner bottom surface of the sensor holder, and is made of a porous material.
Abstract:
An optical scanner includes a light source for projecting a light beam, a deflector for deflecting the light beam, a reflective member for reflecting the light beam toward a target, a contact member, and a pressing member. The reflective member includes a reflective plane and a rear plane opposite the reflective plane. The contact member contacts one of the rear plane of the reflective member and a first lateral plane perpendicular to the reflective plane to position the reflective member in place. The pressing member presses the reflective member against the contact member and includes a first pressing portion to press the reflective plane of the reflective member and a second pressing portion to press a ridge of the reflective member at which the reflective plane and a second lateral plane opposite the first lateral plane and perpendicular to the reflective plane of the reflective member meet.
Abstract:
In an image forming apparatus including a main assembly and a scanning optical apparatus which is inserted into the main assembly of the image forming apparatus in a substantially horizontal direction and is mounted to the apparatus main assembly, in order to fix the scanning optical apparatus to the apparatus main assembly in a state in which the scanning optical apparatus is inserted at a predetermined insertion position of the apparatus main assembly, a leaf spring member for urging an end of the scanning optical apparatus with respect to an insertion direction of the scanning optical apparatus is provided on the main assembly of the image forming apparatus or the scanning optical apparatus and a cushioning member press-contacting the leaf spring member between the main assembly of the image forming apparatus and the scanning optical apparatus is provided.
Abstract:
An image reading apparatus includes a casing, a light emitting section, a substrate, a support member, and a light guide. The light emitting section includes plural point light sources disposed in a row. The light emitting section is installed to a first face of the substrate. The support member is installed to the casing and supports a second face of the substrate at a projection portion where a position of the light emitting section is projected at the second face of the substrate. The light guide is installed to the casing adjacent to the light emitting section, and guides light from the light emitting section to a read-face.
Abstract:
An electrophotographic apparatus achieves miniaturization thereof and improvement of image quality. The shape of an optical scanning device mount frame mounting an optical scanning device is trapezoidal, and asymmetrical with respect to a center line thereof, and a short side part and a long side part are attached to a first and second frames of the apparatus, respectively. A space for attaching parts is available on the side of the first frame, and a driving device is placed inside the first frame so that the apparatus can be miniaturized. Since the optical scanning device mount frame is asymmetrical with respect to the center line thereof, as compared with one having a symmetrical shape, an eigenvalue of vibration can be shifted to a high frequency, and the mount frame is resistant to vibrate. Thus, the fluctuation of a light beam is suppressed, and the image quality can be improved.
Abstract:
An electrophotographic apparatus achieves miniaturization thereof and improvement of image quality. The shape of an optical scanning device mount frame mounting an optical scanning device is trapezoidal, and asymmetrical with respect to a center line thereof, and a short side part and a long side part are attached to a first and second frames of the apparatus, respectively. A space for attaching parts is available on the side of the first frame, and a driving device is placed inside the first frame so that the apparatus can be miniaturized. Since the optical scanning device mount frame is asymmetrical with respect to the center line thereof, as compared with one having a symmetrical shape, an eigenvalue of vibration can be shifted to a high frequency, and the mount frame is resistant to vibrate. Thus, the fluctuation of a light beam is suppressed, and the image quality can be improved.
Abstract:
An image reader comprises a light source illuminating an original, an optical guide system configured to guide a light beam reflected from the original and conveying information about an image on the original, a light-receiving unit configured to receive the light beam guided by the optical guide system and to convert the information about the image into electric signals, a stay member holding the light-receiving unit, a balance weight configured to act on the stay member and to reduce oscillation of the light-receiving unit, and a balance-weight holding structure configured to hold the balance weight in an unrestrained state with respect to the stay member.
Abstract:
An objective lens anti-shock adjustment device comprises a holder that is capable of fixedly holding an objective lens via at least a fastening element. The holder is mounted in a casing by means of a plurality of resilient elements and a plurality of adjuster screws. The resilient elements connect the holder to the casing and the adjuster screws engage through the casing and abut against the holder opposite to the resilient elements in order to allow the adjustments of a vertical positioning and a horizontal orientation of the objective lens. The holder and the casing are provided with respective openings that expose a slot formed on the objective lens. By the external engagement of a tool through the openings into the slot, the objective lens is slid in the holder in order to adjust the depth of focus.