Abstract:
An optical inspection system and a method of inspecting a printed circuit board identify a color for a package of a component and identify dark areas and light areas on the package. The identified color is then used to determine which of the dark areas or light areas represent markings. From the identified markings, the orientation of the component is determined.
Abstract:
An electrical wiring boards 10 having the same specifications are provided with a plurality of lands for identification 12a to 12e and identification of the type of the final product is carried out by applying solder onto one land for identification 12b corresponding to the final product.
Abstract:
A printable coating is disclosed, which is opaque as well as mar and scratch resistant. The coating contains a resin as a binder and, as a filler, titanium dioxide and boron nitride. The resultant coated film product can be used in various chemically and thermally demanding applications such as printed circuit board bar-code labels, wave solder masking tapes, automotive labels, and electrical insulation.
Abstract:
Identifying marks are often used for authentication and tracking purposes with various types of articles, but the marks themselves can sometimes be subject to replication or removal by an outside entity, such as a person or group having malicious intent. This can make it easier for an outside entity to produce a counterfeit article or to sell a stolen article. Carbon nanotubes and other carbon nanomaterials can be used to form identifying marks that are not visible to the naked eye, thereby making the marks more difficult for an outside entity to tamper with. Various articles can include an identifying mark that is localized and not visible to the naked eye, the identifying mark being electrically conductive and containing a carbon nanomaterial. By electrically interrogating the article, such as through spatially measuring eddy currents about the article, the marks can be located and authenticated.
Abstract:
A radio-frequency (RF) shield pad is “dressed” by automatically removing melted solder from the shield pad by traversing a pattern of the shield pad. After an RF shield has been removed from a shield pad of a printed circuit board (PCB), the PCB is pre-heated to a temperature sufficient to heat solder on the shield pad and to prevent thermally stressing the PCB during the dressing process. The solder is melted, such as by a heated tip of a desoldering tool, and the melted solder is vacuumed while the tip automatically traverses the pattern of the shield pad, until all or a threshold amount of the melted solder has been removed from the shield pad. After the PCB has been reworked, solder paste is automatically disposed on the RF-shield pad, the RF shield is temporarily mounted on the RF-shield pad, and the PCB is processed in a reflow oven, thereby securely attaching the RF shield to the PCB.
Abstract:
Circuit modules including identification codes and a method of managing them are provided. A module substrate includes signal input output terminals and outer ground terminals provided at the peripheral portions of a surface which becomes a mounting surface when the circuit module is completed. An inner-ground-terminal formation area surrounded by the signal input output terminals and the outer ground terminals includes a plurality of inner ground terminals arranged in a matrix of rows and columns. One of the edge portions is a direction identification area. The inner ground terminal is not provided in the direction identification area, and a first identification code having information about the position of the module substrate is provided in the direction identification area.
Abstract:
A method for connecting a flexible printed circuit board (PCB) to a printhead assembly that includes a printhead carrier and an ink ejection printhead carried by the carrier. The method includes the steps of: adhering the PCB to a first surface of the printhead; receiving the printhead and PCB in a mechanical nest, and actuating the nest into a position below a heated platen assembly; heating the heated platen assembly and actuating the heated platen assembly rectilinearly towards the nest, the heated platen assembly thereby compressing the PCB and the printhead; actuating a forming bar assembly, provided adjacent the heated platen assembly, rectilinearly towards the nest, the forming bar assembly thereby bending a portion of the PCB extending beyond the printhead towards the printhead assembly; and heating a heater cartridge and actuating the heater cartridge rectilinearly towards the print head printhead in a direction substantially perpendicular to the direction in which the forming bar assembly is actuated, whereby the PCB is connected to the printhead and bonded to the printhead carrier.
Abstract:
The present invention relates to a method for connecting a flexible printed circuit board (PCB) to a printhead assembly. The printhead assembly includes a printhead carrier and an ink ejection printhead carried by the carrier. The method includes the step of connecting the flexible PCB to the printhead using a first heater assembly movable along a first path. In turn, the connected PCB is then bent. The method further includes the step of connecting the bent PCB to the printhead carrier using a second heater assembly movable along a second path.
Abstract:
A process for printing conductive metal markings directly on a substrate under an ambient condition, including the steps of synthesizing or providing conductive the ink on a substrate to form conductive metallic nanoparticles into an ink; and printing the ink on a substrate to form conductive metallic markings on the substrate. The printed conductive metallic markings may form wires that behave as resonant RFID antenna applications.
Abstract:
A circuit board with identifiable information and a method for fabricating the same are proposed. At least one insulating layer within the circuit board has a non-circuit area free of a circuit layout. A plurality of openings are formed in the non-circuit area of the insulating layer. A patterned circuit layer is formed on the insulating layer. Metal identifiable information is disposed in the openings of the non-circuit area. By this arrangement, a product status of the circuit board can be traced and identified via the metal patterned information.