Abstract:
In accordance with certain embodiments, an illumination system comprising a plurality of power strings features elements facilitating compensation for failure of one or more light-emitting elements connected along each power string.
Abstract:
An improved microwave mixer manufactured using multilayer processing includes an integrated circuit that is electrically connected to a top metal layer of a substrate. The microwave mixer includes: a first metal layer; a dielectric substrate on the first metal layer; a second metal layer directly on the substrate, at least two passive circuits arranged on the second metal layer and a top layer metal; a thin dielectric layer on the second metal layer, wherein the top layer metal is directly on the thin dielectric layer; an integrated circuit (IC) attached to the second metal layer, wherein the IC includes at least one combination of non-linear devices, and wherein the IC is directly connected to the passive circuits on the second metal layer; and a protection layer on the IC.
Abstract:
In accordance with certain embodiments, an illumination system comprising a plurality of power strings features elements facilitating compensation for failure of one or more light-emitting elements connected along each power string.
Abstract:
Disclosed are an LED package, an LED package module having the same and a manufacturing method thereof, and a head lamp module having the same and a control method thereof. The light emitting diode package includes: a package substrate; a light emitting diode chip mounted on one surface of the package substrate; an electrode pad formed on the other surface of the package substrate and electrically connected to the light emitting diode chip; and a heat radiation pad formed on the other surface of the package substrate and electrically insulated from the electrode pad.
Abstract:
A multi-layer semiconductor element package structure with surge protection function includes a substrate unit, an insulated unit, a one-way conduction unit and a protection unit. The substrate unit has at least one top substrate, at least one middle substrate and at least one bottom substrate. The insulated unit has at least one first insulated layer filled between the top substrate and the middle substrate and at least one second insulated layer filled between the middle substrate and the bottom substrate. The one-way conduction unit has a plurality of one-way conduction elements electrically disposed between the top substrate and the middle substrate and enclosed by the first insulated layer. The protection unit has at least one protection element with anti surge current or anti surge voltage function electrically disposed between the middle substrate and the bottom substrate and enclosed by the second insulated layer.
Abstract:
A multilayer composite body has an electronic function, in particular, an electronic subassembly comprising a plurality of organic electronic components, such as transistors, diodes, capacitors and so on, having at least one common layer, e.g., a semiconductor layer and/or insulation layer, wherein the common layer may be superfluous in one or more of the components. There thus is provided a structure of an entire subassembly such as an RFID tag, wherein the entire tag with all of its components is implemented in one production process.
Abstract:
A circuit board configuration and method of packaging electronic component embedded into the circuit board in a manner that supports the electronic component thermally, electrically, and mechanically thereof, comprising a circuit board having a first surface and a circuit trace on the first surface; a recess or slot formed on the first surface defined by at least one sidewall that is oblique to the first surface of the circuit board; two or more plated surfaces on the at least one oblique sidewall and electrically connected to the circuit trace; and an electronic component having two or more electrical contact surfaces mounted to the two or more plated surfaces such that the electronic component is physically mounted to the oblique sidewall and in electrical communication with the circuit trace. The circuit board configuration may further comprise an encapsulant at least one end of the electronic component and a conductive material between the oblique sidewall and the electronic component to seal the electronic component inside the slot.
Abstract:
A circuit board configuration and method of packaging electronic component embedded into the circuit board in a manner that supports the electronic component thermally, electrically, and mechanically thereof, comprising a circuit board having a first surface and a circuit trace on the first surface; a recess or slot formed on the first surface defined by at least one sidewall that is oblique to the first surface of the circuit board; two or more plated surfaces on the at least one oblique sidewall and electrically connected to the circuit trace; and an electronic component having two or more electrical contact surfaces mounted to the two or more plated surfaces such that the electronic component is physically mounted to the oblique sidewall and in electrical communication with the circuit trace. The circuit board configuration may further comprise an encapsulant at least one end of the electronic component and a conductive material between the oblique sidewall and the electronic component to seal the electronic component inside the slot.
Abstract:
A surge protection circuit may include a tuned circuit board with traces designed to provide a surge protected and RF isolated DC path while propagating RF signals through the PCB dielectric with microstrip lines. The surge protection circuit utilizes high impedance RF decoupling devices such as quarterwave traces or inductors which isolate the multistage DC protection scheme which may include a gas discharge tube, serial surge impeding devices such as inductors and/or resistors, a decoupled air/spark gap device and a Zener diode junction.
Abstract:
In an arrangement and a method for cooling a power semiconductor in which at least one power semiconductor is electrically and thermally conductively connected to at least one passive electric component. Further, a cooling element is thermally conductively connected to at least a part of the surface of the passive electrical component and/or the electrically and thermally conductive connection.