Profile reactor for operando measurements

    公开(公告)号:US10746661B2

    公开(公告)日:2020-08-18

    申请号:US16324763

    申请日:2017-08-14

    Abstract: The invention pertains to a system for operando measurements that comprises, a reactor (1) comprising a reactor chamber (9) having at least one window (19) transparent for radiation for irradiating a sample (24) provided inside the reaction chamber (9), a radiation source (21, 31) for generating the radiation for irradiating the sample (24), wherein the radiation source (21, 31) is arranged to irradiate the sample at an irradiation location situated on the sample; a detection unit (26, 33) for detecting radiation scattered, emitted, reflected or diffracted by the sample (24) or transmitted through said sample (24), a sampling capillary (12) comprising an orifice (14) for collecting a fluid sample inside the reactor chamber (9), wherein the orifice (14) of the sampling capillary (12) is arranged at a fixed position relative to the irradiation location, wherein the reactor (1) is movable relative to the radiation source (21, 31).

    Optical concentration measuring device and control method for optical concentration measuring device

    公开(公告)号:US10677721B2

    公开(公告)日:2020-06-09

    申请号:US16221584

    申请日:2018-12-17

    Inventor: Yuji Goda

    Abstract: An optical concentration measuring device capable of power saving and lifespan extension of a light source is provided, including a light source emitting an amount of light corresponding to a supplied power; a light detection part receiving at least a part of the light emitted by the light source and generating a signal corresponding an amount of received light as an output signal; a smoothing filter smoothing a signal based on the output signal; a signal change amount calculation part calculating a first and a second change amounts corresponding to a change amount between at least two selected acquisition values selected from acquisition values based on the output signal at current or past time; a light source control part controlling the power supplied to the light source based on the first change amount; and a filter control part controlling characteristics of the smoothing filter based on the second change amount.

    Systems and methods for pump-probe spectroscopy

    公开(公告)号:US10508985B2

    公开(公告)日:2019-12-17

    申请号:US15997227

    申请日:2018-06-04

    Abstract: Pump-probe spectroscopy systems are provided. In an embodiment, such a system comprises an optical subsystem configured to generate a pulsed pump beam and a pulsed probe beam, the pulsed probe beam having a probe pulse frequency ω of at least 20 kHz; a detector subsystem configured to detect a sample signal induced by the pulsed pump beam and the pulsed probe beam; a chopper configured to adjust the frequency of the pump beam to ω/2, wherein the chopper is synchronized with a detector of the detector subsystem but is unsynchronized with the pulsed probe beam; and a data acquisition subsystem configured to initiate acquisition of image data by the detector based on a trigger signal derived from the pulsed pump beam.

    Near-infrared time-of-flight remote sensing

    公开(公告)号:US10386230B1

    公开(公告)日:2019-08-20

    申请号:US16188194

    申请日:2018-11-12

    Abstract: A smart phone or tablet includes laser diodes configured to be pulsed and generate near-infrared light between 700-2500 nanometers. Lenses direct the light to a sample. A detection system includes a photodiode array with pixels coupled to CMOS transistors, and is configured to receive light reflected from the sample, to be synchronized to the light from the laser diodes, and to perform a time-of-flight measurement of a time difference between light from the laser diodes and light reflected from the sample. The detection system is configured to convert light received while the laser diodes are off into a first signal, and light received while at least one laser diodes is on, which includes light reflected from the sample, into a second signal. The smart phone or tablet is configured to difference the first signal and the second signal and to generate a two-dimensional or three-dimensional image using the time-of-flight measurement.

    Spectrally encoded probes
    310.
    发明授权

    公开(公告)号:US10314469B1

    公开(公告)日:2019-06-11

    申请号:US15969298

    申请日:2018-05-02

    Inventor: Mitsuhiro Ikuta

    Abstract: A forward-viewing spectrally encoded endoscope (SEE) probe includes a light guiding component, a light focusing component, and a grating component arranged along a longitudinal axis of a drive cable. The SEE probe is configured for guiding light from the light guiding component, through the light focusing component, and to the grating component, and then forwarding a spectrally dispersed light line from the grating component towards an image plane. One or more of the light guiding component, the light focusing component, and the grating component is arranged at an angle with respect to the longitudinal axis of the drive cable so that at least one wavelength of the spectrally dispersed light line goes to the direction of axis of the drive cable.

Patent Agency Ranking